BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 29071176)

  • 1. Overexpression of herbaceous peony miR156e-3p improves anthocyanin accumulation in transgenic
    Zhao D; Xia X; Wei M; Sun J; Meng J; Tao J
    3 Biotech; 2017 Dec; 7(6):379. PubMed ID: 29071176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Color characteristics, pigment accumulation and biosynthetic analyses of leaf color variation in herbaceous peony (
    Tang Y; Fang Z; Liu M; Zhao D; Tao J
    3 Biotech; 2020 Feb; 10(2):76. PubMed ID: 32051809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and comparative profiling of miRNAs in herbaceous peony (Paeonia lactiflora Pall.) with red/yellow bicoloured flowers.
    Zhao D; Wei M; Shi M; Hao Z; Tao J
    Sci Rep; 2017 Mar; 7():44926. PubMed ID: 28317945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Daminozide reduces red color intensity in herbaceous peony (
    Tang Y; Zhao D; Tao J
    3 Biotech; 2018 Feb; 8(2):102. PubMed ID: 29430364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tomato SlMYB15 transcription factor targeted by sly-miR156e-3p positively regulates ABA-mediated cold tolerance.
    Zhang L; Song J; Lin R; Tang M; Shao S; Yu J; Zhou Y
    J Exp Bot; 2022 Dec; 73(22):7538-7551. PubMed ID: 36103722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Herbaceous peony
    Luan Y; Chen Z; Wang X; Zhang H; Tao J; Zhao D
    Front Plant Sci; 2022; 13():992529. PubMed ID: 36247540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of shade on plant growth and flower quality in the herbaceous peony (Paeonia lactiflora Pall.).
    Zhao D; Hao Z; Tao J
    Plant Physiol Biochem; 2012 Dec; 61():187-96. PubMed ID: 23141672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Herbaceous peony (Paeonia lactiflora Pall.) PlDELLA gene negatively regulates dormancy release and plant growth.
    Bian T; Ma Y; Guo J; Wu Y; Shi D; Guo X
    Plant Sci; 2020 Aug; 297():110539. PubMed ID: 32563469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of miRNAs Responsive to Botrytis cinerea in Herbaceous Peony (Paeonia lactiflora Pall.) by High-Throughput Sequencing.
    Zhao D; Gong S; Hao Z; Tao J
    Genes (Basel); 2015 Sep; 6(3):918-34. PubMed ID: 26393656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative Proteomics Analysis of Herbaceous Peony in Response to Paclobutrazol Inhibition of Lateral Branching.
    Zhao D; Gong S; Hao Z; Meng J; Tao J
    Int J Mol Sci; 2015 Oct; 16(10):24332-52. PubMed ID: 26473855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of herbaceous peony HSP70 confers high temperature tolerance.
    Zhao D; Xia X; Su J; Wei M; Wu Y; Tao J
    BMC Genomics; 2019 Jan; 20(1):70. PubMed ID: 30665351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated mRNA and microRNA transcriptome analyses provide insights into paclobutrazol inhibition of lateral branching in herbaceous peony.
    Liu L; Wu Y; Zhao D; Tao J
    3 Biotech; 2020 Nov; 10(11):496. PubMed ID: 33150122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age-associated methylation change of
    Wu Y; Liu L; Zhao D; Tao J
    Biosci Rep; 2018 Oct; 38(5):. PubMed ID: 30061184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silicon enhances stem strength by promoting lignin accumulation in herbaceous peony (Paeonia lactiflora Pall.).
    Zhao D; Xu C; Luan Y; Shi W; Tang Y; Tao J
    Int J Biol Macromol; 2021 Nov; 190():769-779. PubMed ID: 34520779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Csn-miR156d-CsSPL1 regulates flowering and anthocyanin metabolism.
    Lin Q; Li H; He H; Wang P; Wang M; Zhao H; Wang Y; Ni D; Fang Y; Guo F
    Tree Physiol; 2024 May; ():. PubMed ID: 38813956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Double-stranded RNA-binding protein DRB3 negatively regulates anthocyanin biosynthesis by modulating PAP1 expression in Arabidopsis thaliana.
    Sawano H; Matsuzaki T; Usui T; Tabara M; Fukudome A; Kanaya A; Tanoue D; Hiraguri A; Horiguchi G; Ohtani M; Demura T; Kozaki T; Ishii K; Moriyama H; Fukuhara T
    J Plant Res; 2017 Jan; 130(1):45-55. PubMed ID: 27995376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis and Functional Verification of
    Meng J; Guo J; Li T; Chen Z; Li M; Zhao D; Tao J
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional analysis of a dihydroflavonol 4-reductase gene in
    Sun W; Zhou N; Feng C; Sun S; Tang M; Tang X; Ju Z; Yi Y
    PeerJ; 2021; 9():e12323. PubMed ID: 34721993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arabidopsis thaliana MYB75/PAP1 transcription factor induces anthocyanin production in transgenic tomato plants.
    Zuluaga DL; Gonzali S; Loreti E; Pucciariello C; Degl'Innocenti E; Guidi L; Alpi A; Perata P
    Funct Plant Biol; 2008 Sep; 35(7):606-618. PubMed ID: 32688816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of bisphenol A (BPA)-sensing indicator Arabidopsis thaliana which synthesizes anthocyanin in response to BPA in leaves.
    Kim D; Bahmani R; Ko JH; Hwang S
    Ecotoxicol Environ Saf; 2019 Apr; 170():627-634. PubMed ID: 30579163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.