These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 29071399)

  • 1. Mixed Culture Biocathodes for Production of Hydrogen, Methane, and Carboxylates.
    Ter Heijne A; Geppert F; Sleutels THJA; Batlle-Vilanova P; Liu D; Puig S
    Adv Biochem Eng Biotechnol; 2019; 167():203-229. PubMed ID: 29071399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature dependence of bioelectrochemical CO
    Yang HY; Bao BL; Liu J; Qin Y; Wang YR; Su KZ; Han JC; Mu Y
    Bioelectrochemistry; 2018 Feb; 119():180-188. PubMed ID: 29054074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of biocathode during repeated cycles of bioelectrochemical conversion of carbon dioxide to methane.
    Baek G; Kim J; Lee S; Lee C
    Bioresour Technol; 2017 Oct; 241():1201-1207. PubMed ID: 28688737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced start-up of anaerobic facultatively autotrophic biocathodes in bioelectrochemical systems.
    Zaybak Z; Pisciotta JM; Tokash JC; Logan BE
    J Biotechnol; 2013 Dec; 168(4):478-85. PubMed ID: 24126154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioelectrochemical Power-to-Gas: State of the Art and Future Perspectives.
    Geppert F; Liu D; van Eerten-Jansen M; Weidner E; Buisman C; Ter Heijne A
    Trends Biotechnol; 2016 Nov; 34(11):879-894. PubMed ID: 27666730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enrichment of microbial electrolysis cell biocathodes from sediment microbial fuel cell bioanodes.
    Pisciotta JM; Zaybak Z; Call DF; Nam JY; Logan BE
    Appl Environ Microbiol; 2012 Aug; 78(15):5212-9. PubMed ID: 22610438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Start-Up Strategies and Electrode Materials on Carbon Dioxide Reduction on Biocathodes.
    Saheb-Alam S; Singh A; Hermansson M; Persson F; Schnürer A; Wilén BM; Modin O
    Appl Environ Microbiol; 2018 Feb; 84(4):. PubMed ID: 29222104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode.
    Bajracharya S; ter Heijne A; Dominguez Benetton X; Vanbroekhoven K; Buisman CJ; Strik DP; Pant D
    Bioresour Technol; 2015 Nov; 195():14-24. PubMed ID: 26066971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using a non-precious metal catalyst for long-term enhancement of methane production in a zero-gap microbial electrosynthesis cell.
    Bian B; Yu N; Akbari A; Shi L; Zhou X; Xie C; Saikaly PE; Logan BE
    Water Res; 2024 Aug; 259():121815. PubMed ID: 38820732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of gas diffusion biocathode in microbial electrosynthesis from carbon dioxide.
    Bajracharya S; Vanbroekhoven K; Buisman CJ; Pant D; Strik DP
    Environ Sci Pollut Res Int; 2016 Nov; 23(22):22292-22308. PubMed ID: 27436381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alamethicin suppresses methanogenesis and promotes acetogenesis in bioelectrochemical systems.
    Zhu X; Siegert M; Yates MD; Logan BE
    Appl Environ Microbiol; 2015 Jun; 81(11):3863-8. PubMed ID: 25819972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat-Treated Stainless Steel Felt as a New Cathode Material in a Methane-Producing Bioelectrochemical System.
    Liu D; Zheng T; Buisman C; Ter Heijne A
    ACS Sustain Chem Eng; 2017 Dec; 5(12):11346-11353. PubMed ID: 29226036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of gas and carbon transport in a methanogenic bioelectrochemical system (BES).
    Dykstra CM; Pavlostathis SG
    Biotechnol Bioeng; 2017 May; 114(5):961-969. PubMed ID: 27922181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of the set anode potential on the performance and internal energy losses of a methane-producing microbial electrolysis cell.
    Villano M; Ralo C; Zeppilli M; Aulenta F; Majone M
    Bioelectrochemistry; 2016 Feb; 107():1-6. PubMed ID: 26342333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen production with a microbial biocathode.
    Rozendal RA; Jeremiasse AW; Hamelers HV; Buisman CJ
    Environ Sci Technol; 2008 Jan; 42(2):629-34. PubMed ID: 18284174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Competition between Methanogens and Acetogens in Biocathodes: A Comparison between Potentiostatic and Galvanostatic Control.
    Molenaar SD; Saha P; Mol AR; Sleutels TH; Ter Heijne A; Buisman CJ
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28106846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methanogenic Biocathode Microbial Community Development and the Role of Bacteria.
    Dykstra CM; Pavlostathis SG
    Environ Sci Technol; 2017 May; 51(9):5306-5316. PubMed ID: 28368570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Granular Carbon-Based Electrodes as Cathodes in Methane-Producing Bioelectrochemical Systems.
    Liu D; Roca-Puigros M; Geppert F; Caizán-Juanarena L; Na Ayudthaya SP; Buisman C; Ter Heijne A
    Front Bioeng Biotechnol; 2018; 6():78. PubMed ID: 29946543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduced overpotential of methane-producing biocathodes: Effect of current and electrode storage capacity.
    Brandão Lavender M; Pang S; Liu D; Jourdin L; Ter Heijne A
    Bioresour Technol; 2022 Mar; 347():126650. PubMed ID: 34974095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review on bio-electrochemical systems (BESs) for the syngas and value added biochemicals production.
    Kumar G; Saratale RG; Kadier A; Sivagurunathan P; Zhen G; Kim SH; Saratale GD
    Chemosphere; 2017 Jun; 177():84-92. PubMed ID: 28284119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.