BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 29072073)

  • 1. Sequence-Based Prediction of Cysteine Reactivity Using Machine Learning.
    Wang H; Chen X; Li C; Liu Y; Yang F; Wang C
    Biochemistry; 2018 Jan; 57(4):451-460. PubMed ID: 29072073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of redox-sensitive cysteines using sequential distance and other sequence-based features.
    Sun MA; Zhang Q; Wang Y; Ge W; Guo D
    BMC Bioinformatics; 2016 Aug; 17(1):316. PubMed ID: 27553667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative reactivity profiling predicts functional cysteines in proteomes.
    Weerapana E; Wang C; Simon GM; Richter F; Khare S; Dillon MB; Bachovchin DA; Mowen K; Baker D; Cravatt BF
    Nature; 2010 Dec; 468(7325):790-5. PubMed ID: 21085121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying cysteines and histidines in transition-metal-binding sites using support vector machines and neural networks.
    Passerini A; Punta M; Ceroni A; Rost B; Frasconi P
    Proteins; 2006 Nov; 65(2):305-16. PubMed ID: 16927295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HyperCys: A Structure- and Sequence-Based Predictor of Hyper-Reactive Druggable Cysteines.
    Gao M; Günther S
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36983037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The disulfide proteome and other reactive cysteine proteomes: analysis and functional significance.
    Lindahl M; Mata-Cabana A; Kieselbach T
    Antioxid Redox Signal; 2011 Jun; 14(12):2581-642. PubMed ID: 21275844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A competitive chemical-proteomic platform to identify zinc-binding cysteines.
    Pace NJ; Weerapana E
    ACS Chem Biol; 2014 Jan; 9(1):258-65. PubMed ID: 24111988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative redox proteomics: the NOxICAT method.
    Lindemann C; Leichert LI
    Methods Mol Biol; 2012; 893():387-403. PubMed ID: 22665313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isotopically-Labeled Iodoacetamide-Alkyne Probes for Quantitative Cysteine-Reactivity Profiling.
    Abo M; Li C; Weerapana E
    Mol Pharm; 2018 Mar; 15(3):743-749. PubMed ID: 29172527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applications of Reactive Cysteine Profiling.
    Backus KM
    Curr Top Microbiol Immunol; 2019; 420():375-417. PubMed ID: 30105421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of the bonding states of cysteines using the support vector machines based on multiple feature vectors and cysteine state sequences.
    Chen YC; Lin YS; Lin CJ; Hwang JK
    Proteins; 2004 Jun; 55(4):1036-42. PubMed ID: 15146500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UbiSite: incorporating two-layered machine learning method with substrate motifs to predict ubiquitin-conjugation site on lysines.
    Huang CH; Su MG; Kao HJ; Jhong JH; Weng SL; Lee TY
    BMC Syst Biol; 2016 Jan; 10 Suppl 1(Suppl 1):6. PubMed ID: 26818456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying Functional Cysteine Residues in the Mitochondria.
    Bak DW; Pizzagalli MD; Weerapana E
    ACS Chem Biol; 2017 Apr; 12(4):947-957. PubMed ID: 28157297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic and Quantitative Assessment of Hydrogen Peroxide Reactivity With Cysteines Across Human Proteomes.
    Fu L; Liu K; Sun M; Tian C; Sun R; Morales Betanzos C; Tallman KA; Porter NA; Yang Y; Guo D; Liebler DC; Yang J
    Mol Cell Proteomics; 2017 Oct; 16(10):1815-1828. PubMed ID: 28827280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction and analysis of redox-sensitive cysteines using machine learning and statistical methods.
    Keßler M; Wittig I; Ackermann J; Koch I
    Biol Chem; 2021 Jul; 402(8):925-935. PubMed ID: 34261205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interrogation of Functional Mitochondrial Cysteine Residues by Quantitative Mass Spectrometry.
    Bak DW; Weerapana E
    Methods Mol Biol; 2019; 1967():211-227. PubMed ID: 31069773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cy-preds: An algorithm and a web service for the analysis and prediction of cysteine reactivity.
    Soylu İ; Marino SM
    Proteins; 2016 Feb; 84(2):278-91. PubMed ID: 26685111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The extreme hyper-reactivity of selected cysteines drives hierarchical disulfide bond formation in serum albumin.
    Bocedi A; Fabrini R; Pedersen JZ; Federici G; Iavarone F; Martelli C; Castagnola M; Ricci G
    FEBS J; 2016 Nov; 283(22):4113-4127. PubMed ID: 27685835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteome-Wide Profiling of Targets of Cysteine reactive Small Molecules by Using Ethynyl Benziodoxolone Reagents.
    Abegg D; Frei R; Cerato L; Prasad Hari D; Wang C; Waser J; Adibekian A
    Angew Chem Int Ed Engl; 2015 Sep; 54(37):10852-7. PubMed ID: 26211368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sulfhydryl-specific probe for monitoring protein redox sensitivity.
    Lee JJ; Ha S; Kim HJ; Ha HJ; Lee HY; Lee KJ
    ACS Chem Biol; 2014 Dec; 9(12):2883-94. PubMed ID: 25354229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.