BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 29072073)

  • 21. A quantitative thiol reactivity profiling platform to analyze redox and electrophile reactive cysteine proteomes.
    Fu L; Li Z; Liu K; Tian C; He J; He J; He F; Xu P; Yang J
    Nat Protoc; 2020 Sep; 15(9):2891-2919. PubMed ID: 32690958
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cysteine accessibility during As3+ metalation of the α- and β-domains of recombinant human MT1a.
    Irvine GW; Summers KL; Stillman MJ
    Biochem Biophys Res Commun; 2013 Apr; 433(4):477-83. PubMed ID: 23523794
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cooperativity of the oxidization of cysteines in globular proteins.
    Jiang-Ning S; Wei-Jiang L; Wen-Bo X
    J Theor Biol; 2004 Nov; 231(1):85-95. PubMed ID: 15363931
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exploring synonymous codon usage preferences of disulfide-bonded and non-disulfide bonded cysteines in the E. coli genome.
    Song J; Wang M; Burrage K
    J Theor Biol; 2006 Jul; 241(2):390-401. PubMed ID: 16427089
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of the two zinc-bound cysteines in the ferric uptake regulation protein from Escherichia coli: chemical modification and mass spectrometry analysis.
    Gonzalez de Peredo A; Saint-Pierre C; Adrait A; Jacquamet L; Latour JM; Michaud-Soret I; Forest E
    Biochemistry; 1999 Jun; 38(26):8582-9. PubMed ID: 10387106
    [TBL] [Abstract][Full Text] [Related]  

  • 26. SOHPRED: a new bioinformatics tool for the characterization and prediction of human S-sulfenylation sites.
    Wang X; Yan R; Li J; Song J
    Mol Biosyst; 2016 Aug; 12(9):2849-58. PubMed ID: 27364688
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Essential cysteines in 3-deoxy-D-manno-octulosonic acid 8-phosphate synthase from Escherichia coli: analysis by chemical modification and site-directed mutagenesis.
    Salleh HM; Patel MA; Woodard RW
    Biochemistry; 1996 Jul; 35(27):8942-7. PubMed ID: 8688430
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification and characterization of cysteinyl exposure in proteins by selective mercury labeling and nano-electrospray ionization quadrupole time-of-flight mass spectrometry.
    Lu M; Li XF; Le XC; Weinfeld M; Wang H
    Rapid Commun Mass Spectrom; 2010 Jun; 24(11):1523-32. PubMed ID: 20486248
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Features of reactive cysteines discovered through computation: from kinase inhibition to enrichment around protein degrons.
    Fowler NJ; Blanford CF; de Visser SP; Warwicker J
    Sci Rep; 2017 Nov; 7(1):16338. PubMed ID: 29180682
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of reactive cysteines in a protein using arsenic labeling and collision-induced dissociation tandem mass spectrometry.
    Lu M; Wang H; Wang Z; Li XF; Le XC
    J Proteome Res; 2008 Aug; 7(8):3080-90. PubMed ID: 18613716
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cysteine-specific Chemical Proteomics: From Target Identification to Drug Discovery.
    Hoch DG; Abegg D; Wang C; Shuster A; Adibekian A
    Chimia (Aarau); 2016 Nov; 70(11):764-767. PubMed ID: 28661335
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cysteine-rich positions outside the structural zinc motif of human papillomavirus E7 provide conformational modulation and suggest functional redox roles.
    Chemes LB; Camporeale G; Sánchez IE; de Prat-Gay G; Alonso LG
    Biochemistry; 2014 Mar; 53(10):1680-96. PubMed ID: 24559112
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimized deep-targeted proteotranscriptomic profiling reveals unexplored Conus toxin diversity and novel cysteine frameworks.
    Lavergne V; Harliwong I; Jones A; Miller D; Taft RJ; Alewood PF
    Proc Natl Acad Sci U S A; 2015 Jul; 112(29):E3782-91. PubMed ID: 26150494
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative analysis of the cysteine redoxome by iodoacetyl tandem mass tags.
    Shakir S; Vinh J; Chiappetta G
    Anal Bioanal Chem; 2017 Jun; 409(15):3821-3830. PubMed ID: 28389918
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prediction of the disulfide-bonding state of cysteines in proteins based on dipeptide composition.
    Song JN; Wang ML; Li WJ; Xu WB
    Biochem Biophys Res Commun; 2004 May; 318(1):142-7. PubMed ID: 15110765
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Human ferredoxin: overproduction in Escherichia coli, reconstitution in vitro, and spectroscopic studies of iron-sulfur cluster ligand cysteine-to-serine mutants.
    Xia B; Cheng H; Bandarian V; Reed GH; Markley JL
    Biochemistry; 1996 Jul; 35(29):9488-95. PubMed ID: 8755728
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting the state of cysteines based on sequence information.
    Guang X; Guo Y; Xiao J; Wang X; Sun J; Xiong W; Li M
    J Theor Biol; 2010 Dec; 267(3):312-8. PubMed ID: 20826168
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reactive-cysteine profiling for drug discovery.
    Maurais AJ; Weerapana E
    Curr Opin Chem Biol; 2019 Jun; 50():29-36. PubMed ID: 30897495
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative proteomics by fluorescent labeling of cysteine residues using a set of two cyanine-based or three rhodamine-based dyes.
    Volke D; Hoffmann R
    Electrophoresis; 2008 Nov; 29(22):4516-26. PubMed ID: 19035404
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemical proteomic identification of functional cysteines with atypical electrophile reactivities.
    Litwin K; Crowley VM; Suciu RM; Boger DL; Cravatt BF
    Tetrahedron Lett; 2021 Mar; 67():. PubMed ID: 33776155
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.