These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 29072261)

  • 21. Strong crystal size effect on deformation twinning.
    Yu Q; Shan ZW; Li J; Huang X; Xiao L; Sun J; Ma E
    Nature; 2010 Jan; 463(7279):335-8. PubMed ID: 20090749
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pressure-induced solid-state lattice mending of nanopores by pulse laser annealing.
    Huang PH; Lai HY
    Nanotechnology; 2008 Jun; 19(25):255701. PubMed ID: 21828661
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cooperative deformation in high-entropy alloys at ultralow temperatures.
    Naeem M; He H; Zhang F; Huang H; Harjo S; Kawasaki T; Wang B; Lan S; Wu Z; Wang F; Wu Y; Lu Z; Zhang Z; Liu CT; Wang XL
    Sci Adv; 2020 Mar; 6(13):eaax4002. PubMed ID: 32258390
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Grain rotation and lattice deformation during photoinduced chemical reactions revealed by in situ X-ray nanodiffraction.
    Huang Z; Bartels M; Xu R; Osterhoff M; Kalbfleisch S; Sprung M; Suzuki A; Takahashi Y; Blanton TN; Salditt T; Miao J
    Nat Mater; 2015 Jul; 14(7):691-5. PubMed ID: 26053760
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In-situ analysis of grain rotation and lattice strain within a magnesium polycrystal based on synchrotron polychromatic X-ray diffraction technique: (I) prior to twin.
    Li L; Wu Y; Wu J
    Micron; 2018 Aug; 111():1-8. PubMed ID: 29792941
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reversible cyclic deformation mechanism of gold nanowires by twinning-detwinning transition evidenced from in situ TEM.
    Lee S; Im J; Yoo Y; Bitzek E; Kiener D; Richter G; Kim B; Oh SH
    Nat Commun; 2014; 5():3033. PubMed ID: 24398783
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-energy transmission Laue micro-beam X-ray diffraction: a probe for intra-granular lattice orientation and elastic strain in thicker samples.
    Hofmann F; Song X; Abbey B; Jun TS; Korsunsky AM
    J Synchrotron Radiat; 2012 May; 19(Pt 3):307-18. PubMed ID: 22514163
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanosecond X-ray diffraction of shock-compressed superionic water ice.
    Millot M; Coppari F; Rygg JR; Correa Barrios A; Hamel S; Swift DC; Eggert JH
    Nature; 2019 May; 569(7755):251-255. PubMed ID: 31068720
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Shock wave propagation, plasticity, and void collapse in open-cell nanoporous Ta.
    Tang JF; Xiao JC; Deng L; Li W; Zhang XM; Wang L; Xiao SF; Deng HQ; Hu WY
    Phys Chem Chem Phys; 2018 Nov; 20(44):28039-28048. PubMed ID: 30383055
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Twinning-like lattice reorientation without a crystallographic twinning plane.
    Liu BY; Wang J; Li B; Lu L; Zhang XY; Shan ZW; Li J; Jia CL; Sun J; Ma E
    Nat Commun; 2014; 5():3297. PubMed ID: 24522756
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of shock-dynamics study with synchrotron-based time-resolved X-ray diffraction using an Nd:glass laser system.
    Takagi S; Ichiyanagi K; Kyono A; Nozawa S; Kawai N; Fukaya R; Funamori N; Adachi SI
    J Synchrotron Radiat; 2020 Mar; 27(Pt 2):371-377. PubMed ID: 32153275
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phase Transformation in Tantalum under Extreme Laser Deformation.
    Lu CH; Hahn EN; Remington BA; Maddox BR; Bringa EM; Meyers MA
    Sci Rep; 2015 Oct; 5():15064. PubMed ID: 26478106
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The laser shock station in the dynamic compression sector. I.
    Wang X; Rigg P; Sethian J; Sinclair N; Weir N; Williams B; Zhang J; Hawreliak J; Toyoda Y; Gupta Y; Li Y; Broege D; Bromage J; Earley R; Guy D; Zuegel J
    Rev Sci Instrum; 2019 May; 90(5):053901. PubMed ID: 31153279
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In-situ neutron diffraction study of lattice deformation behaviour of commercially pure titanium at cryogenic temperature.
    Lee MS; Kawasaki T; Yamashita T; Harjo S; Hyun YT; Jeong Y; Jun TS
    Sci Rep; 2022 Mar; 12(1):3719. PubMed ID: 35260655
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The plastic deformation of iron at pressures of the Earth's inner core.
    Wenk HR; Matthies S; Hemley RJ; Mao HK; Shu J
    Nature; 2000 Jun; 405(6790):1044-7. PubMed ID: 10890442
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling multiscale evolution of numerous voids in shocked brittle material.
    Yu Y; Wang W; He H; Lu T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):043309. PubMed ID: 24827366
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deformation crossover: from nano- to mesoscale.
    Cheng S; Stoica AD; Wang XL; Ren Y; Almer J; Horton JA; Liu CT; Clausen B; Brown DW; Liaw PK; Zuo L
    Phys Rev Lett; 2009 Jul; 103(3):035502. PubMed ID: 19659294
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deformation textures produced in diamond anvil experiments, analysed in radial diffraction geometry.
    Wenk HR; Lonardelli I; Merkel S; Miyagi L; Pehl J; Speziale S; Tommaseo CE
    J Phys Condens Matter; 2006 Jun; 18(25):S933-47. PubMed ID: 22611103
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Atomic-scale observation of nucleation- and growth-controlled deformation twinning in body-centered cubic nanocrystals.
    Zhong L; Zhang Y; Wang X; Zhu T; Mao SX
    Nat Commun; 2024 Jan; 15(1):560. PubMed ID: 38228646
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanosecond white-light Laue diffraction measurements of dislocation microstructure in shock-compressed single-crystal copper.
    Suggit MJ; Higginbotham A; Hawreliak JA; Mogni G; Kimminau G; Dunne P; Comley AJ; Park N; Remington BA; Wark JS
    Nat Commun; 2012; 3():1224. PubMed ID: 23187624
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.