BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 29072359)

  • 1. Fungal extracellular phosphatases: their role in P cycling under different pH and P sources availability.
    Della Mónica IF; Godoy MS; Godeas AM; Scervino JM
    J Appl Microbiol; 2018 Jan; 124(1):155-165. PubMed ID: 29072359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon and Nitrogen Sources Influence Tricalcium Phosphate Solubilization and Extracellular Phosphatase Activity by Talaromyces flavus.
    Stefanoni Rubio PJ; Godoy MS; Della Mónica IF; Pettinari MJ; Godeas AM; Scervino JM
    Curr Microbiol; 2016 Jan; 72(1):41-7. PubMed ID: 26407892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Medium pH, carbon and nitrogen concentrations modulate the phosphate solubilization efficiency of Penicillium purpurogenum through organic acid production.
    Scervino JM; Papinutti VL; Godoy MS; Rodriguez MA; Della Monica I; Recchi M; Pettinari MJ; Godeas AM
    J Appl Microbiol; 2011 May; 110(5):1215-23. PubMed ID: 21324053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of an organophosphate pesticide, monocrotophos, on phosphate-solubilizing efficiency of soil fungal isolates.
    Jain R; Garg V; Saxena J
    Appl Biochem Biotechnol; 2015 Jan; 175(2):813-24. PubMed ID: 25344433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capability of Penicillium oxalicum y2 to release phosphate from different insoluble phosphorus sources and soil.
    Wang J; Zhao YG; Maqbool F
    Folia Microbiol (Praha); 2021 Feb; 66(1):69-77. PubMed ID: 32939738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The wheat growth-promoting traits of Ochrobactrum and Pantoea species, responsible for solubilization of different P sources, are ensured by genes encoding enzymes of multiple P-releasing pathways.
    Rasul M; Yasmin S; Yahya M; Breitkreuz C; Tarkka M; Reitz T
    Microbiol Res; 2021 May; 246():126703. PubMed ID: 33482437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Penicillium and Talaromyces endophytes from Tillandsia catimbauensis, a bromeliad endemic in the Brazilian tropical dry forest, and their potential for L-asparaginase production.
    Silva LF; Freire KTLS; Araújo-Magalhães GR; Agamez-Montalvo GS; Sousa MA; Costa-Silva TA; Paiva LM; Pessoa-Junior A; Bezerra JDP; Souza-Motta CM
    World J Microbiol Biotechnol; 2018 Oct; 34(11):162. PubMed ID: 30368630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and phosphate-solubilizing ability of a fungus, Penicillium sp. from soil of an alum mine.
    Chai B; Wu Y; Liu P; Liu B; Gao M
    J Basic Microbiol; 2011 Feb; 51(1):5-14. PubMed ID: 21259286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Process of rock phosphate solubilization by Aspergillus sp PS 104 in soil amended medium.
    Kang SC; Pandey P; Khillon R; Maheshwari DK
    J Environ Biol; 2008 Sep; 29(5):743-6. PubMed ID: 19295075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced solubilization of rock phosphate by Penicillium bilaiae in pH-buffered solution culture.
    Takeda M; Knight JD
    Can J Microbiol; 2006 Nov; 52(11):1121-9. PubMed ID: 17215904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphatase production by microorganisms isolated from diverse types of soils.
    Tarafdar JC; Chhonkar PK
    Zentralbl Bakteriol Naturwiss; 1979; 134(2):119-24. PubMed ID: 224622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphonoacetic acid utilization by fungal isolates: occurrence and properties of a phosphonoacetate hydrolase in some penicillia.
    Forlani G; Klimek-Ochab M; Jaworski J; Lejczak B; Picco AM
    Mycol Res; 2006 Dec; 110(Pt 12):1455-63. PubMed ID: 17123811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphate Mobilization by Culturable Fungi and Their Capacity to Increase Soil P Availability and Promote Barley Growth.
    Brazhnikova YV; Shaposhnikov AI; Sazanova AL; Belimov AA; Mukasheva TD; Ignatova LV
    Curr Microbiol; 2022 Jul; 79(8):240. PubMed ID: 35792979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Isolation, identification and characterization of a strain of phosphate-solubilizing bacteria from red soil].
    Liu W; He Y; Zhang K; Fan J; Cao H
    Wei Sheng Wu Xue Bao; 2012 Mar; 52(3):326-33. PubMed ID: 22712403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of succinate on phosphate solubilization in nitrogen fixing bacteria harbouring chick pea and their effect on plant growth.
    Iyer B; Rajput MS; Rajkumar S
    Microbiol Res; 2017 Sep; 202():43-50. PubMed ID: 28647122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of Penicillium fungi on plant growth and phosphorus mobilization in neutral to alkaline soils from southern Australia.
    Wakelin SA; Gupta VV; Harvey PR; Ryder MH
    Can J Microbiol; 2007 Jan; 53(1):106-15. PubMed ID: 17496956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular cloning and expression analysis of two distinct beta-glucosidase genes, bg1 and aven1, with very different biological roles from the thermophilic, saprophytic fungus Talaromyces emersonii.
    Collins CM; Murray PG; Denman S; Morrissey JP; Byrnes L; Teeri TT; Tuohy MG
    Mycol Res; 2007 Jul; 111(Pt 7):840-9. PubMed ID: 17664063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ambient pH sensing in filamentous fungi: pitfalls in elucidating regulatory hierarchical signaling networks.
    Rossi A; Cruz AH; Santos RS; Silva PM; Silva EM; Mendes NS; Martinez-Rossi NM
    IUBMB Life; 2013 Nov; 65(11):930-5. PubMed ID: 24265200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Considerations on the use of the p-nitrophenyl phosphomonoesterase assay in the study of the phosphorus nutrition of soil borne fungi.
    Tibbett M
    Microbiol Res; 2002; 157(3):221-31. PubMed ID: 12398293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cyclochlorotine mycotoxin is produced by the nonribosomal peptide synthetase CctN in Talaromyces islandicus ('Penicillium islandicum').
    Schafhauser T; Kirchner N; Kulik A; Huijbers MM; Flor L; Caradec T; Fewer DP; Gross H; Jacques P; Jahn L; Jokela J; Leclère V; Ludwig-Müller J; Sivonen K; van Berkel WJ; Weber T; Wohlleben W; van Pée KH
    Environ Microbiol; 2016 Nov; 18(11):3728-3741. PubMed ID: 26954535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.