These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 29072548)

  • 1. Isolation of mutants with abnormal petal epidermal cell morphology.
    Saffer AM; Irish VF
    Plant Signal Behav; 2017 Nov; 12(11):e1382794. PubMed ID: 29072548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatio-temporal orientation of microtubules controls conical cell shape in Arabidopsis thaliana petals.
    Ren H; Dang X; Cai X; Yu P; Li Y; Zhang S; Liu M; Chen B; Lin D
    PLoS Genet; 2017 Jun; 13(6):e1006851. PubMed ID: 28644898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of petal epidermal micromorphology in Leguminosae and its use as a marker of petal identity.
    Ojeda I; Francisco-Ortega J; Cronk QC
    Ann Bot; 2009 Nov; 104(6):1099-110. PubMed ID: 19789174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conical epidermal cells allow bees to grip flowers and increase foraging efficiency.
    Whitney HM; Chittka L; Bruce TJ; Glover BJ
    Curr Biol; 2009 Jun; 19(11):948-53. PubMed ID: 19446458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Petal micromorphology and its relationship to pollination.
    Costa VB; Pimentel RM; Chagas MG; Alves GD; Castro CC
    Plant Biol (Stuttg); 2017 Mar; 19(2):115-122. PubMed ID: 27796070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of cell and petal morphogenesis by R2R3 MYB transcription factors.
    Baumann K; Perez-Rodriguez M; Bradley D; Venail J; Bailey P; Jin H; Koes R; Roberts K; Martin C
    Development; 2007 May; 134(9):1691-701. PubMed ID: 17376813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cortical Microtubule Organization during Petal Morphogenesis in
    Yang Y; Huang W; Wu E; Lin C; Chen B; Lin D
    Int J Mol Sci; 2019 Oct; 20(19):. PubMed ID: 31623377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of three different cell types is associated with the activity of a specific MYB transcription factor in the ventral petal of Antirrhinum majus flowers.
    Perez-Rodriguez M; Jaffe FW; Butelli E; Glover BJ; Martin C
    Development; 2005 Jan; 132(2):359-70. PubMed ID: 15604096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A theoretical approach to the relationship between wettability and surface microstructures of epidermal cells and structured cuticles of flower petals.
    Taneda H; Watanabe-Taneda A; Chhetry R; Ikeda H
    Ann Bot; 2015 May; 115(6):923-37. PubMed ID: 25851137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Why do so many petals have conical epidermal cells?
    Whitney HM; Bennett KM; Dorling M; Sandbach L; Prince D; Chittka L; Glover BJ
    Ann Bot; 2011 Sep; 108(4):609-16. PubMed ID: 21470973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Petal-Specific InMYB1 Promoter Functions by Recognizing Petaloid Cells.
    Azuma M; Mitsuda N; Goto K; Oshima Y; Ohme-Takagi M; Otagaki S; Matsumoto S; Shiratake K
    Plant Cell Physiol; 2016 Mar; 57(3):580-7. PubMed ID: 26858281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Petal Development in Lotus japonicus.
    Weng L; Tian Z; Feng X; Li X; Xu S; Hu X; Luo D; Yang J
    J Integr Plant Biol; 2011 Oct; 53(10):770-82. PubMed ID: 21902804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CINCINNATA controls both cell differentiation and growth in petal lobes and leaves of Antirrhinum.
    Crawford BC; Nath U; Carpenter R; Coen ES
    Plant Physiol; 2004 May; 135(1):244-53. PubMed ID: 15122032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intraspecific variation in the petal epidermal cell morphology of
    Bailes EJ; Glover BJ
    Flora; 2018 Jul; 244-245():29-36. PubMed ID: 30008511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A leucine-rich repeat receptor-like kinase gene is involved in the specification of outer cell layers in rice roots.
    Huang CF; Yamaji N; Ono K; Ma JF
    Plant J; 2012 Feb; 69(4):565-76. PubMed ID: 22014207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phylogenomic analyses reveal an exceptionally high number of evolutionary shifts in a florally diverse clade of African legumes.
    Ojeda DI; Koenen E; Cervantes S; de la Estrella M; Banguera-Hinestroza E; Janssens SB; Migliore J; Demenou BB; Bruneau A; Forest F; Hardy OJ
    Mol Phylogenet Evol; 2019 Aug; 137():156-167. PubMed ID: 31075505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mechanics of cell fate determination in petals.
    Martin C; Bhatt K; Baumann K; Jin H; Zachgo S; Roberts K; Schwarz-Sommer Z; Glover B; Perez-Rodrigues M
    Philos Trans R Soc Lond B Biol Sci; 2002 Jun; 357(1422):809-13. PubMed ID: 12079676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SPIKE1 Activates ROP GTPase to Modulate Petal Growth and Shape.
    Ren H; Dang X; Yang Y; Huang D; Liu M; Gao X; Lin D
    Plant Physiol; 2016 Sep; 172(1):358-71. PubMed ID: 27440754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncorrelated evolution of leaf and petal venation patterns across the angiosperm phylogeny.
    Roddy AB; Guilliams CM; Lilittham T; Farmer J; Wormser V; Pham T; Fine PV; Feild TS; Dawson TE
    J Exp Bot; 2013 Oct; 64(13):4081-8. PubMed ID: 23963676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal, but not spatial, changes in expression patterns of petal identity genes are associated with loss of papillate conical cells and the shift to bird pollination in Macaronesian Lotus (Leguminosae).
    Ojeda DI; JaƩn-Molina R; Santos-Guerra A; Caujape-Castells J; Cronk Q
    Plant Biol (Stuttg); 2017 May; 19(3):420-427. PubMed ID: 28135026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.