These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 29073019)
21. A structural perspective of CTD function. Meinhart A; Kamenski T; Hoeppner S; Baumli S; Cramer P Genes Dev; 2005 Jun; 19(12):1401-15. PubMed ID: 15964991 [TBL] [Abstract][Full Text] [Related]
22. Solution structure of tandem SH2 domains from Spt6 protein and their binding to the phosphorylated RNA polymerase II C-terminal domain. Liu J; Zhang J; Gong Q; Xiong P; Huang H; Wu B; Lu G; Wu J; Shi Y J Biol Chem; 2011 Aug; 286(33):29218-29226. PubMed ID: 21676864 [TBL] [Abstract][Full Text] [Related]
23. 1H, 13C, and 15N resonance assignments for the CTD-interacting domain of Nrd1 bound to Ser5-phosphorylated CTD of RNA polymerase II. Kubíček K; Pasulka J; Černá H; Löhr F; Štefl R Biomol NMR Assign; 2011 Oct; 5(2):203-5. PubMed ID: 21350922 [TBL] [Abstract][Full Text] [Related]
24. Yeast Spt6 Reads Multiple Phosphorylation Patterns of RNA Polymerase II C-Terminal Domain In Vitro. Brázda P; Krejčíková M; Kasiliauskaite A; Šmiřáková E; Klumpler T; Vácha R; Kubíček K; Štefl R J Mol Biol; 2020 Jun; 432(14):4092-4107. PubMed ID: 32439331 [TBL] [Abstract][Full Text] [Related]
25. A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation. Kizer KO; Phatnani HP; Shibata Y; Hall H; Greenleaf AL; Strahl BD Mol Cell Biol; 2005 Apr; 25(8):3305-16. PubMed ID: 15798214 [TBL] [Abstract][Full Text] [Related]
26. Structural basis for the recognition of the S2, S5-phosphorylated RNA polymerase II CTD by the mRNA anti-terminator protein hSCAF4. Zhou M; Ehsan F; Gan L; Dong A; Li Y; Liu K; Min J FEBS Lett; 2022 Jan; 596(2):249-259. PubMed ID: 34897689 [TBL] [Abstract][Full Text] [Related]
27. RNA polymerase II CTD phosphopeptides compete with RNA for the interaction with Pcf11. Hollingworth D; Noble CG; Taylor IA; Ramos A RNA; 2006 Apr; 12(4):555-60. PubMed ID: 16497660 [TBL] [Abstract][Full Text] [Related]
28. FF domains of CA150 bind transcription and splicing factors through multiple weak interactions. Smith MJ; Kulkarni S; Pawson T Mol Cell Biol; 2004 Nov; 24(21):9274-85. PubMed ID: 15485897 [TBL] [Abstract][Full Text] [Related]
29. The interactome of the atypical phosphatase Rtr1 in Saccharomyces cerevisiae. Smith-Kinnaman WR; Berna MJ; Hunter GO; True JD; Hsu P; Cabello GI; Fox MJ; Varani G; Mosley AL Mol Biosyst; 2014 Jul; 10(7):1730-41. PubMed ID: 24671508 [TBL] [Abstract][Full Text] [Related]
30. Phosphoserines of the carboxy terminal domain of RNA polymerase II are involved in the interaction with transcription-associated proteins (TAPs). Vidyalakshmi S; Ramamurthy V OMICS; 2013 Mar; 17(3):130-5. PubMed ID: 23421907 [TBL] [Abstract][Full Text] [Related]
31. Snapshots of the RNA processing factor SCAF8 bound to different phosphorylated forms of the carboxyl-terminal domain of RNA polymerase II. Becker R; Loll B; Meinhart A J Biol Chem; 2008 Aug; 283(33):22659-69. PubMed ID: 18550522 [TBL] [Abstract][Full Text] [Related]
32. Repeat-Specific Functions for the C-Terminal Domain of RNA Polymerase II in Budding Yeast. Babokhov M; Mosaheb MM; Baker RW; Fuchs SM G3 (Bethesda); 2018 May; 8(5):1593-1601. PubMed ID: 29523636 [TBL] [Abstract][Full Text] [Related]
33. The evolutionarily conserved Pol II flap loop contributes to proper transcription termination on short yeast genes. Pearson E; Moore C Cell Rep; 2014 Nov; 9(3):821-8. PubMed ID: 25437538 [TBL] [Abstract][Full Text] [Related]
34. CTD-dependent dismantling of the RNA polymerase II elongation complex by the pre-mRNA 3'-end processing factor, Pcf11. Zhang Z; Fu J; Gilmour DS Genes Dev; 2005 Jul; 19(13):1572-80. PubMed ID: 15998810 [TBL] [Abstract][Full Text] [Related]
35. Structure analysis suggests Ess1 isomerizes the carboxy-terminal domain of RNA polymerase II via a bivalent anchoring mechanism. Namitz KEW; Zheng T; Canning AJ; Alicea-Velazquez NL; Castañeda CA; Cosgrove MS; Hanes SD Commun Biol; 2021 Mar; 4(1):398. PubMed ID: 33767358 [TBL] [Abstract][Full Text] [Related]
36. Dynamic phosphorylation patterns of RNA polymerase II CTD during transcription. Heidemann M; Hintermair C; Voß K; Eick D Biochim Biophys Acta; 2013 Jan; 1829(1):55-62. PubMed ID: 22982363 [TBL] [Abstract][Full Text] [Related]
37. Structure of Saccharomyces cerevisiae Rtr1 reveals an active site for an atypical phosphatase. Irani S; Yogesha SD; Mayfield J; Zhang M; Zhang Y; Matthews WL; Nie G; Prescott NA; Zhang YJ Sci Signal; 2016 Mar; 9(417):ra24. PubMed ID: 26933063 [TBL] [Abstract][Full Text] [Related]
38. Treatment of Surface Plasmon Resonance (SPR) Background in Total Internal Reflection Ellipsometry: Characterization of RNA Polymerase II Film Formation. Hemzal D; Kang YR; Dvořák J; Kabzinski T; Kubíček K; Kim YD; Humlíček J Appl Spectrosc; 2019 Mar; 73(3):261-270. PubMed ID: 30784293 [TBL] [Abstract][Full Text] [Related]
39. NMR structure of a complex formed by the carboxyl-terminal domain of human RAP74 and a phosphorylated peptide from the central domain of the FCP1 phosphatase. Yang A; Abbott KL; Desjardins A; Di Lello P; Omichinski JG; Legault P Biochemistry; 2009 Mar; 48(9):1964-74. PubMed ID: 19215094 [TBL] [Abstract][Full Text] [Related]
40. RECQ5 helicase associates with the C-terminal repeat domain of RNA polymerase II during productive elongation phase of transcription. Kanagaraj R; Huehn D; MacKellar A; Menigatti M; Zheng L; Urban V; Shevelev I; Greenleaf AL; Janscak P Nucleic Acids Res; 2010 Dec; 38(22):8131-40. PubMed ID: 20705653 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]