BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 29073021)

  • 1. Multigenerational silencing dynamics control cell aging.
    Li Y; Jin M; O'Laughlin R; Bittihn P; Tsimring LS; Pillus L; Hasty J; Hao N
    Proc Natl Acad Sci U S A; 2017 Oct; 114(42):11253-11258. PubMed ID: 29073021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Divergent Aging of Isogenic Yeast Cells Revealed through Single-Cell Phenotypic Dynamics.
    Jin M; Li Y; O'Laughlin R; Bittihn P; Pillus L; Tsimring LS; Hasty J; Hao N
    Cell Syst; 2019 Mar; 8(3):242-253.e3. PubMed ID: 30852250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ribosomal DNA and cellular senescence: new evidence supporting the connection between rDNA and aging.
    Ganley AR; Kobayashi T
    FEMS Yeast Res; 2014 Feb; 14(1):49-59. PubMed ID: 24373458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nutritional Control of Chronological Aging and Heterochromatin in
    McCleary DF; Rine J
    Genetics; 2017 Mar; 205(3):1179-1193. PubMed ID: 28064165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aggregation of the Whi3 protein, not loss of heterochromatin, causes sterility in old yeast cells.
    Schlissel G; Krzyzanowski MK; Caudron F; Barral Y; Rine J
    Science; 2017 Mar; 355(6330):1184-1187. PubMed ID: 28302853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Paradigms and pitfalls of yeast longevity research.
    Sinclair DA
    Mech Ageing Dev; 2002 Apr; 123(8):857-67. PubMed ID: 12044934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A programmable fate decision landscape underlies single-cell aging in yeast.
    Li Y; Jiang Y; Paxman J; O'Laughlin R; Klepin S; Zhu Y; Pillus L; Tsimring LS; Hasty J; Hao N
    Science; 2020 Jul; 369(6501):325-329. PubMed ID: 32675375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perinuclear cohibin complexes maintain replicative life span via roles at distinct silent chromatin domains.
    Chan JN; Poon BP; Salvi J; Olsen JB; Emili A; Mekhail K
    Dev Cell; 2011 Jun; 20(6):867-79. PubMed ID: 21664583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase.
    Imai S; Armstrong CM; Kaeberlein M; Guarente L
    Nature; 2000 Feb; 403(6771):795-800. PubMed ID: 10693811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Epigenetic Pathways to Ribosomal DNA Silencing.
    Srivastava R; Srivastava R; Ahn SH
    Microbiol Mol Biol Rev; 2016 Sep; 80(3):545-63. PubMed ID: 27250769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput analysis of yeast replicative aging using a microfluidic system.
    Jo MC; Liu W; Gu L; Dang W; Qin L
    Proc Natl Acad Sci U S A; 2015 Jul; 112(30):9364-9. PubMed ID: 26170317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of replicative age on transcriptional silencing near telomeres in Saccharomyces cerevisiae.
    Kim S; Villeponteau B; Jazwinski SM
    Biochem Biophys Res Commun; 1996 Feb; 219(2):370-6. PubMed ID: 8604994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The heterochromatin loss model of aging.
    Villeponteau B
    Exp Gerontol; 1997; 32(4-5):383-94. PubMed ID: 9315443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering longevity-design of a synthetic gene oscillator to slow cellular aging.
    Zhou Z; Liu Y; Feng Y; Klepin S; Tsimring LS; Pillus L; Hasty J; Hao N
    Science; 2023 Apr; 380(6643):376-381. PubMed ID: 37104589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HST2 mediates SIR2-independent life-span extension by calorie restriction.
    Lamming DW; Latorre-Esteves M; Medvedik O; Wong SN; Tsang FA; Wang C; Lin SJ; Sinclair DA
    Science; 2005 Sep; 309(5742):1861-4. PubMed ID: 16051752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The generational scalability of single-cell replicative aging.
    Liu P; Acar M
    Sci Adv; 2018 Jan; 4(1):eaao4666. PubMed ID: 29399632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sound silencing: the Sir2 protein and cellular senescence.
    Defossez PA; Lin SJ; McNabb DS
    Bioessays; 2001 Apr; 23(4):327-32. PubMed ID: 11268038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trajectories of Aging: How Systems Biology in Yeast Can Illuminate Mechanisms of Personalized Aging.
    Crane MM; Chen KL; Blue BW; Kaeberlein M
    Proteomics; 2020 Mar; 20(5-6):e1800420. PubMed ID: 31385433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genes determining yeast replicative life span in a long-lived genetic background.
    Kaeberlein M; Kirkland KT; Fields S; Kennedy BK
    Mech Ageing Dev; 2005 Apr; 126(4):491-504. PubMed ID: 15722108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reproductive potential and instability of the rDNA region of the Saccharomyces cerevisiae yeast: Common or separate mechanisms of regulation?
    Zadrag-Tecza R; Skoneczna A
    Exp Gerontol; 2016 Nov; 84():29-39. PubMed ID: 27546186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.