These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 29073021)

  • 21. Engineering longevity-design of a synthetic gene oscillator to slow cellular aging.
    Zhou Z; Liu Y; Feng Y; Klepin S; Tsimring LS; Pillus L; Hasty J; Hao N
    Science; 2023 Apr; 380(6643):376-381. PubMed ID: 37104589
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Perinuclear cohibin complexes maintain replicative life span via roles at distinct silent chromatin domains.
    Chan JN; Poon BP; Salvi J; Olsen JB; Emili A; Mekhail K
    Dev Cell; 2011 Jun; 20(6):867-79. PubMed ID: 21664583
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sir2-dependent asymmetric segregation of damaged proteins in ubp10 null mutants is independent of genomic silencing.
    Orlandi I; Bettiga M; Alberghina L; Nyström T; Vai M
    Biochim Biophys Acta; 2010 May; 1803(5):630-8. PubMed ID: 20211662
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Trajectories of Aging: How Systems Biology in Yeast Can Illuminate Mechanisms of Personalized Aging.
    Crane MM; Chen KL; Blue BW; Kaeberlein M
    Proteomics; 2020 Mar; 20(5-6):e1800420. PubMed ID: 31385433
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Replicative aging in yeast: the means to the end.
    Steinkraus KA; Kaeberlein M; Kennedy BK
    Annu Rev Cell Dev Biol; 2008; 24():29-54. PubMed ID: 18616424
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase.
    Imai S; Armstrong CM; Kaeberlein M; Guarente L
    Nature; 2000 Feb; 403(6771):795-800. PubMed ID: 10693811
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mediator influences telomeric silencing and cellular life span.
    Zhu X; Liu B; Carlsten JO; Beve J; Nyström T; Myers LC; Gustafsson CM
    Mol Cell Biol; 2011 Jun; 31(12):2413-21. PubMed ID: 21482672
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The implication of Sir2 in replicative aging and senescence in Saccharomyces cerevisiae.
    Ha CW; Huh WK
    Aging (Albany NY); 2011 Mar; 3(3):319-24. PubMed ID: 21415463
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Increased life span due to calorie restriction in respiratory-deficient yeast.
    Kaeberlein M; Hu D; Kerr EO; Tsuchiya M; Westman EA; Dang N; Fields S; Kennedy BK
    PLoS Genet; 2005 Nov; 1(5):e69. PubMed ID: 16311627
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The budding yeast, Saccharomyces cerevisiae, as a model for aging research: a critical review.
    Gershon H; Gershon D
    Mech Ageing Dev; 2000 Dec; 120(1-3):1-22. PubMed ID: 11087900
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The heterochromatin loss model of aging.
    Villeponteau B
    Exp Gerontol; 1997; 32(4-5):383-94. PubMed ID: 9315443
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mnsod overexpression extends the yeast chronological (G(0)) life span but acts independently of Sir2p histone deacetylase to shorten the replicative life span of dividing cells.
    Harris N; Costa V; MacLean M; Mollapour M; Moradas-Ferreira P; Piper PW
    Free Radic Biol Med; 2003 Jun; 34(12):1599-606. PubMed ID: 12788479
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Isonicotinamide enhances Sir2 protein-mediated silencing and longevity in yeast by raising intracellular NAD+ concentration.
    McClure JM; Wierman MB; Maqani N; Smith JS
    J Biol Chem; 2012 Jun; 287(25):20957-66. PubMed ID: 22539348
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Loss of Smi1, a protein involved in cell wall synthesis, extends replicative life span by enhancing rDNA stability in Saccharomyces cerevisiae.
    Hong S; Huh WK
    J Biol Chem; 2021; 296():100258. PubMed ID: 33837734
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The generational scalability of single-cell replicative aging.
    Liu P; Acar M
    Sci Adv; 2018 Jan; 4(1):eaao4666. PubMed ID: 29399632
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Epigenetic Pathways to Ribosomal DNA Silencing.
    Srivastava R; Srivastava R; Ahn SH
    Microbiol Mol Biol Rev; 2016 Sep; 80(3):545-63. PubMed ID: 27250769
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mutations in DNA replication genes reduce yeast life span.
    Hoopes LL; Budd M; Choe W; Weitao T; Campbell JL
    Mol Cell Biol; 2002 Jun; 22(12):4136-46. PubMed ID: 12024027
    [TBL] [Abstract][Full Text] [Related]  

  • 38. HST2 mediates SIR2-independent life-span extension by calorie restriction.
    Lamming DW; Latorre-Esteves M; Medvedik O; Wong SN; Tsang FA; Wang C; Lin SJ; Sinclair DA
    Science; 2005 Sep; 309(5742):1861-4. PubMed ID: 16051752
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dietary and genetic effects on age-related loss of gene silencing reveal epigenetic plasticity of chromatin repression during aging.
    Jiang N; Du G; Tobias E; Wood JG; Whitaker R; Neretti N; Helfand SL
    Aging (Albany NY); 2013 Nov; 5(11):813-24. PubMed ID: 24243774
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The yeast replicative aging model.
    He C; Zhou C; Kennedy BK
    Biochim Biophys Acta Mol Basis Dis; 2018 Sep; 1864(9 Pt A):2690-2696. PubMed ID: 29524633
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.