These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 29073021)

  • 41. HST2 mediates SIR2-independent life-span extension by calorie restriction.
    Lamming DW; Latorre-Esteves M; Medvedik O; Wong SN; Tsang FA; Wang C; Lin SJ; Sinclair DA
    Science; 2005 Sep; 309(5742):1861-4. PubMed ID: 16051752
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dietary and genetic effects on age-related loss of gene silencing reveal epigenetic plasticity of chromatin repression during aging.
    Jiang N; Du G; Tobias E; Wood JG; Whitaker R; Neretti N; Helfand SL
    Aging (Albany NY); 2013 Nov; 5(11):813-24. PubMed ID: 24243774
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The yeast replicative aging model.
    He C; Zhou C; Kennedy BK
    Biochim Biophys Acta Mol Basis Dis; 2018 Sep; 1864(9 Pt A):2690-2696. PubMed ID: 29524633
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molecular docking analysis of imine stilbene analogs and evaluation of their anti-aging activity using yeast and mammalian cell models.
    Naini R; Chikati R; Vudem DR; Kancha RK
    J Recept Signal Transduct Res; 2019 Feb; 39(1):55-59. PubMed ID: 31132911
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The shortened replicative life span of prohibitin mutants of yeast appears to be due to defective mitochondrial segregation in old mother cells.
    Piper PW; Jones GW; Bringloe D; Harris N; MacLean M; Mollapour M
    Aging Cell; 2002 Dec; 1(2):149-57. PubMed ID: 12882345
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Insights into the Conserved Regulatory Mechanisms of Human and Yeast Aging.
    Dahiya R; Mohammad T; Alajmi MF; Rehman MT; Hasan GM; Hussain A; Hassan MI
    Biomolecules; 2020 Jun; 10(6):. PubMed ID: 32526825
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Reconstitution of heterochromatin-dependent transcriptional gene silencing.
    Johnson A; Li G; Sikorski TW; Buratowski S; Woodcock CL; Moazed D
    Mol Cell; 2009 Sep; 35(6):769-81. PubMed ID: 19782027
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of replicative age on transcriptional silencing near telomeres in Saccharomyces cerevisiae.
    Kim S; Villeponteau B; Jazwinski SM
    Biochem Biophys Res Commun; 1996 Feb; 219(2):370-6. PubMed ID: 8604994
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Genes determining yeast replicative life span in a long-lived genetic background.
    Kaeberlein M; Kirkland KT; Fields S; Kennedy BK
    Mech Ageing Dev; 2005 Apr; 126(4):491-504. PubMed ID: 15722108
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A model for step-wise assembly of heterochromatin in yeast.
    Moazed D; Rudner AD; Huang J; Hoppe GJ; Tanny JC
    Novartis Found Symp; 2004; 259():48-56; discussion 56-62, 163-9. PubMed ID: 15171246
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Measuring replicative life span in the budding yeast.
    Steffen KK; Kennedy BK; Kaeberlein M
    J Vis Exp; 2009 Jun; (28):. PubMed ID: 19556967
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ribosomal DNA and the nucleolus at the heart of aging.
    Kasselimi E; Pefani DE; Taraviras S; Lygerou Z
    Trends Biochem Sci; 2022 Apr; 47(4):328-341. PubMed ID: 35063340
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mcm10 mediates the interaction between DNA replication and silencing machineries.
    Liachko I; Tye BK
    Genetics; 2009 Feb; 181(2):379-91. PubMed ID: 19064704
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Manipulation of a nuclear NAD+ salvage pathway delays aging without altering steady-state NAD+ levels.
    Anderson RM; Bitterman KJ; Wood JG; Medvedik O; Cohen H; Lin SS; Manchester JK; Gordon JI; Sinclair DA
    J Biol Chem; 2002 May; 277(21):18881-90. PubMed ID: 11884393
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Regulation of telomere silencing by the core histones-autophagy-Sir2 axis.
    Mei Q; Yu Q; Li X; Chen J; Yu X
    Life Sci Alliance; 2023 Mar; 6(3):. PubMed ID: 36585257
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sound silencing: the Sir2 protein and cellular senescence.
    Defossez PA; Lin SJ; McNabb DS
    Bioessays; 2001 Apr; 23(4):327-32. PubMed ID: 11268038
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sir2 blocks extreme life-span extension.
    Fabrizio P; Gattazzo C; Battistella L; Wei M; Cheng C; McGrew K; Longo VD
    Cell; 2005 Nov; 123(4):655-67. PubMed ID: 16286010
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genomic instability is associated with natural life span variation in Saccharomyces cerevisiae.
    Qin H; Lu M; Goldfarb DS
    PLoS One; 2008 Jul; 3(7):e2670. PubMed ID: 18628831
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Yeast heterochromatin regulators Sir2 and Sir3 act directly at euchromatic DNA replication origins.
    Hoggard TA; Chang F; Perry KR; Subramanian S; Kenworthy J; Chueng J; Shor E; Hyland EM; Boeke JD; Weinreich M; Fox CA
    PLoS Genet; 2018 May; 14(5):e1007418. PubMed ID: 29795547
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Reproductive potential and instability of the rDNA region of the Saccharomyces cerevisiae yeast: Common or separate mechanisms of regulation?
    Zadrag-Tecza R; Skoneczna A
    Exp Gerontol; 2016 Nov; 84():29-39. PubMed ID: 27546186
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.