These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 29073021)

  • 61. Quantifying yeast chronological life span by outgrowth of aged cells.
    Murakami C; Kaeberlein M
    J Vis Exp; 2009 May; (27):. PubMed ID: 19421136
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Synergistic effects of repair, resilience and retention of damage determine the conditions for replicative ageing.
    Borgqvist J; Welkenhuysen N; Cvijovic M
    Sci Rep; 2020 Jan; 10(1):1556. PubMed ID: 32005954
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Genetic manipulation of longevity-related genes as a tool to regulate yeast life span and metabolite production during winemaking.
    Orozco H; Matallana E; Aranda A
    Microb Cell Fact; 2013 Jan; 12():1. PubMed ID: 23282100
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Heterochromatic gene silencing by activator interference and a transcription elongation barrier.
    Johnson A; Wu R; Peetz M; Gygi SP; Moazed D
    J Biol Chem; 2013 Oct; 288(40):28771-82. PubMed ID: 23940036
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Multiple bromodomain genes are involved in restricting the spread of heterochromatic silencing at the Saccharomyces cerevisiae HMR-tRNA boundary.
    Jambunathan N; Martinez AW; Robert EC; Agochukwu NB; Ibos ME; Dugas SL; Donze D
    Genetics; 2005 Nov; 171(3):913-22. PubMed ID: 16079223
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Sir2 regulates histone H3 lysine 9 methylation and heterochromatin assembly in fission yeast.
    Shankaranarayana GD; Motamedi MR; Moazed D; Grewal SI
    Curr Biol; 2003 Jul; 13(14):1240-6. PubMed ID: 12867036
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A sirtuin's role in preventing senescence by protecting ribosomal DNA.
    Etchegaray JP; Mostoslavsky R
    J Biol Chem; 2018 Jul; 293(28):11251-11252. PubMed ID: 30006387
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Genetic approaches to aging in budding and fission yeasts: new connections and new opportunities.
    Chen BR; Runge KW
    Subcell Biochem; 2012; 57():291-314. PubMed ID: 22094427
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Proteostatic stress as a nodal hallmark of replicative aging.
    Moreno DF; Aldea M
    Exp Cell Res; 2020 Sep; 394(2):112163. PubMed ID: 32640194
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Yeast longevity and aging--the mitochondrial connection.
    Jazwinski SM
    Mech Ageing Dev; 2005 Feb; 126(2):243-8. PubMed ID: 15621203
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Rtg2 protein links metabolism and genome stability in yeast longevity.
    Borghouts C; Benguria A; Wawryn J; Jazwinski SM
    Genetics; 2004 Feb; 166(2):765-77. PubMed ID: 15020466
    [TBL] [Abstract][Full Text] [Related]  

  • 72.
    Liu J; Mosser L; Botanch C; François JM; Capp JP
    G3 (Bethesda); 2020 Sep; 10(9):3435-3443. PubMed ID: 32727919
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Heterochromatin islands and their dynamic reorganization: a hypothesis for three distinctive features of cellular aging.
    Imai S; Kitano H
    Exp Gerontol; 1998 Sep; 33(6):555-70. PubMed ID: 9789733
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The SUMO E3 ligase Siz2 exerts a locus-dependent effect on gene silencing in Saccharomyces cerevisiae.
    Pasupala N; Easwaran S; Hannan A; Shore D; Mishra K
    Eukaryot Cell; 2012 Apr; 11(4):452-62. PubMed ID: 22345352
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A functional analysis reveals dependence on the anaphase-promoting complex for prolonged life span in yeast.
    Harkness TA; Shea KA; Legrand C; Brahmania M; Davies GF
    Genetics; 2004 Oct; 168(2):759-74. PubMed ID: 15514051
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Advances in quantitative biology methods for studying replicative aging in
    O'Laughlin R; Jin M; Li Y; Pillus L; Tsimring LS; Hasty J; Hao N
    Transl Med Aging; 2020; 4():151-160. PubMed ID: 33880425
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Chronological aging-independent replicative life span regulation by Msn2/Msn4 and Sod2 in Saccharomyces cerevisiae.
    Fabrizio P; Pletcher SD; Minois N; Vaupel JW; Longo VD
    FEBS Lett; 2004 Jan; 557(1-3):136-42. PubMed ID: 14741356
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Rapid Nuclear Exclusion of Hcm1 in Aging
    Ghavidel A; Baxi K; Prusinkiewicz M; Swan C; Belak ZR; Eskiw CH; Carvalho CE; Harkness TA
    G3 (Bethesda); 2018 May; 8(5):1579-1592. PubMed ID: 29519938
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The role of autophagy in the regulation of yeast life span.
    Tyler JK; Johnson JE
    Ann N Y Acad Sci; 2018 Apr; 1418(1):31-43. PubMed ID: 29363766
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Loss of Smi1, a protein involved in cell wall synthesis, extends replicative lifespan by enhancing rDNA stability in Saccharomyces cerevisiae.
    Hong S; Huh WK
    J Biol Chem; 2021 Jan; ():. PubMed ID: 33402426
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.