These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 29073208)

  • 1. Pendular energy transduction within the step during human walking on slopes at different speeds.
    Dewolf AH; Ivanenko YP; Lacquaniti F; Willems PA
    PLoS One; 2017; 12(10):e0186963. PubMed ID: 29073208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical energy fluctuations during hill walking: the effects of slope on inverted pendulum exchange.
    Gottschall JS; Kram R
    J Exp Biol; 2006 Dec; 209(Pt 24):4895-900. PubMed ID: 17142678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The pendular mechanism does not determine the optimal speed of loaded walking on gradients.
    Gomeñuka NA; Bona RL; da Rosa RG; Peyré-Tartaruga LA
    Hum Mov Sci; 2016 Jun; 47():175-185. PubMed ID: 27017543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical work performed by the individual legs during uphill and downhill walking.
    Franz JR; Lyddon NE; Kram R
    J Biomech; 2012 Jan; 45(2):257-62. PubMed ID: 22099148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The rebound of the body during uphill and downhill running at different speeds.
    Dewolf AH; Peñailillo LE; Willems PA
    J Exp Biol; 2016 Aug; 219(Pt 15):2276-88. PubMed ID: 27207641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristic Changes of the Stance-Phase Plantar Pressure Curve When Walking Uphill and Downhill: Cross-Sectional Study.
    Wolff C; Steinheimer P; Warmerdam E; Dahmen T; Slusallek P; Schlinkmann C; Chen F; Orth M; Pohlemann T; Ganse B
    J Med Internet Res; 2024 May; 26():e44948. PubMed ID: 38718385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterns of mechanical energy change in tetrapod gait: pendula, springs and work.
    Biewener AA
    J Exp Zool A Comp Exp Biol; 2006 Nov; 305(11):899-911. PubMed ID: 17029267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy cost of walking and running at extreme uphill and downhill slopes.
    Minetti AE; Moia C; Roi GS; Susta D; Ferretti G
    J Appl Physiol (1985); 2002 Sep; 93(3):1039-46. PubMed ID: 12183501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuromechanical adjustments when walking with an aiding or hindering horizontal force.
    Dewolf AH; Ivanenko YP; Mesquita RM; Lacquaniti F; Willems PA
    Eur J Appl Physiol; 2020 Jan; 120(1):91-106. PubMed ID: 31701272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of elastic energy storage and recovery in downhill and uphill running.
    Snyder KL; Kram R; Gottschall JS
    J Exp Biol; 2012 Jul; 215(Pt 13):2283-7. PubMed ID: 22675189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Do mechanical gait parameters explain the higher metabolic cost of walking in obese adolescents?
    Peyrot N; Thivel D; Isacco L; Morin JB; Duche P; Belli A
    J Appl Physiol (1985); 2009 Jun; 106(6):1763-70. PubMed ID: 19246657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle strain is modulated more with running slope than speed in wild turkey knee and hip extensors.
    Roberts TJ; Higginson BK; Nelson FE; Gabaldón AM
    J Exp Biol; 2007 Jul; 210(Pt 14):2510-7. PubMed ID: 17601955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscle mechanical work requirements during normal walking: the energetic cost of raising the body's center-of-mass is significant.
    Neptune RR; Zajac FE; Kautz SA
    J Biomech; 2004 Jun; 37(6):817-25. PubMed ID: 15111069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The contributions of ankle, knee and hip joint work to individual leg work change during uphill and downhill walking over a range of speeds.
    Montgomery JR; Grabowski AM
    R Soc Open Sci; 2018 Aug; 5(8):180550. PubMed ID: 30225047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Foot and shoe responsible for majority of soft tissue work in early stance of walking.
    Honert EC; Zelik KE
    Hum Mov Sci; 2019 Apr; 64():191-202. PubMed ID: 30769210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The metabolic power required to support body weight and accelerate body mass changes during walking on uphill and downhill slopes.
    Zai CZ; Grabowski AM
    J Biomech; 2020 Apr; 103():109667. PubMed ID: 32063278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Giant Galapagos tortoises walk without inverted pendulum mechanical-energy exchange.
    Zani PA; Gottschall JS; Kram R
    J Exp Biol; 2005 Apr; 208(Pt 8):1489-94. PubMed ID: 15802673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptations to changing speed, load, and gradient in human walking: cost of transport, optimal speed, and pendulum.
    Gomeñuka NA; Bona RL; da Rosa RG; Peyré-Tartaruga LA
    Scand J Med Sci Sports; 2014 Jun; 24(3):e165-73. PubMed ID: 24102934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Level, Uphill, and Downhill Running Economy Values Are Correlated Except on Steep Slopes.
    Lemire M; Falbriard M; Aminian K; Millet GP; Meyer F
    Front Physiol; 2021; 12():697315. PubMed ID: 34276417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can accelerometry accurately predict the energy cost of uphill/downhill walking?
    Terrier P; Aminian K; Schutz Y
    Ergonomics; 2001 Jan; 44(1):48-62. PubMed ID: 11214898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.