BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 29073393)

  • 1. What is segmented sleep? Actigraphy field validation for daytime sleep and nighttime wake.
    Samson DR; Yetish GM; Crittenden AN; Mabulla IA; Mabulla AZP; Nunn CL
    Sleep Health; 2016 Dec; 2(4):341-347. PubMed ID: 29073393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A longitudinal study of sleep-wake patterns during early infancy using proposed scoring guidelines for actigraphy.
    Adams EL; Master L; Buxton OM; Savage JS
    Sleep Med; 2019 Nov; 63():98-105. PubMed ID: 31610384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hadza sleep biology: Evidence for flexible sleep-wake patterns in hunter-gatherers.
    Samson DR; Crittenden AN; Mabulla IA; Mabulla AZ; Nunn CL
    Am J Phys Anthropol; 2017 Mar; 162(3):573-582. PubMed ID: 28063234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic sleep-wake and nap analysis with a new wrist worn online activity monitoring device vivago WristCare.
    Lötjönen J; Korhonen I; Hirvonen K; Eskelinen S; Myllymäki M; Partinen M
    Sleep; 2003 Feb; 26(1):86-90. PubMed ID: 12627738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Criteria for nap identification in infants and young children using 24-h actigraphy and agreement with parental diary.
    Galland B; Meredith-Jones K; Gray A; Sayers R; Lawrence J; Taylor B; Taylor R
    Sleep Med; 2016 Mar; 19():85-92. PubMed ID: 27198952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Actigraphic assessment of a polysomnographic-recorded nap: a validation study.
    Kanady JC; Drummond SP; Mednick SC
    J Sleep Res; 2011 Mar; 20(1 Pt 2):214-22. PubMed ID: 20626612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Actigraphic assessment of sleep/wake behavior in central disorders of hypersomnolence.
    Filardi M; Pizza F; Martoni M; Vandi S; Plazzi G; Natale V
    Sleep Med; 2015 Jan; 16(1):126-30. PubMed ID: 25547035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wake detection capacity of actigraphy during sleep.
    Paquet J; Kawinska A; Carrier J
    Sleep; 2007 Oct; 30(10):1362-9. PubMed ID: 17969470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Minimal Effect of Daytime Napping Behavior on Nocturnal Sleep in Pregnant Women.
    Ebert RM; Wood A; Okun ML
    J Clin Sleep Med; 2015 Jun; 11(6):635-43. PubMed ID: 25766712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An integrated video-analysis software system designed for movement detection and sleep analysis. Validation of a tool for the behavioural study of sleep.
    Scatena M; Dittoni S; Maviglia R; Frusciante R; Testani E; Vollono C; Losurdo A; Colicchio S; Gnoni V; Labriola C; Farina B; Pennisi MA; Della Marca G
    Clin Neurophysiol; 2012 Feb; 123(2):318-23. PubMed ID: 21873109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Algorithms for using an activity-based accelerometer for identification of infant sleep-wake states during nap studies.
    Galland BC; Kennedy GJ; Mitchell EA; Taylor BJ
    Sleep Med; 2012 Jun; 13(6):743-51. PubMed ID: 22542788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct comparison of two actigraphy devices with polysomnographically recorded naps in healthy young adults.
    Cellini N; Buman MP; McDevitt EA; Ricker AA; Mednick SC
    Chronobiol Int; 2013 Jun; 30(5):691-8. PubMed ID: 23721120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of nap frequency on daytime sleep architecture.
    McDevitt EA; Alaynick WA; Mednick SC
    Physiol Behav; 2012 Aug; 107(1):40-4. PubMed ID: 22659474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cortisol awakening response (CAR) in 2- to 4-year-old children: effects of acute nighttime sleep restriction, wake time, and daytime napping.
    Gribbin CE; Watamura SE; Cairns A; Harsh JR; Lebourgeois MK
    Dev Psychobiol; 2012 May; 54(4):412-22. PubMed ID: 21953381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validity of actigraphy for nighttime sleep monitoring in hospitalized patients with traumatic injuries.
    Bigué JL; Duclos C; Dumont M; Paquet J; Blais H; Menon DK; Bernard F; Gosselin N
    J Clin Sleep Med; 2020 Feb; 16(2):185-192. PubMed ID: 31992412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of daytime napping and full-night sleep on the consolidation of declarative and procedural information.
    van Schalkwijk FJ; Sauter C; Hoedlmoser K; Heib DPJ; Klösch G; Moser D; Gruber G; Anderer P; Zeitlhofer J; Schabus M
    J Sleep Res; 2019 Feb; 28(1):e12649. PubMed ID: 29271015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterns of infant-only wake bouts and night feeds during early infancy: An exploratory study using actigraphy in mother-father-infant triads.
    Adams EL; Master L; Buxton OM; Savage JS
    Pediatr Obes; 2020 Oct; 15(10):e12640. PubMed ID: 32319729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of the Munich Actimetry Sleep Detection Algorithm for estimating sleep-wake patterns from activity recordings.
    Loock AS; Khan Sullivan A; Reis C; Paiva T; Ghotbi N; Pilz LK; Biller AM; Molenda C; Vuori-Brodowski MT; Roenneberg T; Winnebeck EC
    J Sleep Res; 2021 Dec; 30(6):e13371. PubMed ID: 33960551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Duration of sleep inertia after napping during simulated night work and in extended operations.
    Signal TL; van den Berg MJ; Mulrine HM; Gander PH
    Chronobiol Int; 2012 Jul; 29(6):769-79. PubMed ID: 22734577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Segmented sleep in a nonelectric, small-scale agricultural society in Madagascar.
    Samson DR; Manus MB; Krystal AD; Fakir E; Yu JJ; Nunn CL
    Am J Hum Biol; 2017 Jul; 29(4):. PubMed ID: 28181718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.