BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 29073393)

  • 21. Napping and circadian sleep-wake regulation during healthy aging.
    Deantoni M; Reyt M; Baillet M; Dourte M; De Haan S; Lesoinne A; Vandewalle G; Maquet P; Berthomier C; Muto V; Hammad G; Schmidt C
    Sleep; 2024 May; 47(5):. PubMed ID: 37943833
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Daytime napping and nighttime sleep in pregnant individuals with insomnia disorder.
    Badon SE; Dietch JR; Simpson N; Lyell DJ; Manber R
    J Clin Sleep Med; 2023 Feb; 19(2):371-377. PubMed ID: 36448328
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An algorithm for actigraphy-based sleep/wake scoring: Comparison with polysomnography.
    Lüdtke S; Hermann W; Kirste T; Beneš H; Teipel S
    Clin Neurophysiol; 2021 Jan; 132(1):137-145. PubMed ID: 33278666
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Invalidity of one actigraphy brand for identifying sleep and wake among infants.
    Insana SP; Gozal D; Montgomery-Downs HE
    Sleep Med; 2010 Feb; 11(2):191-6. PubMed ID: 20083430
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Addressing the challenges of sleep/wake class imbalance in bed based non-contact actigraphic recordings of sleep.
    McDowell A; Donnelly MP; Nugent CD; Galway L; McGrath MJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4654-7. PubMed ID: 24110772
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reproducibility of a Standardized Actigraphy Scoring Algorithm for Sleep in a US Hispanic/Latino Population.
    Patel SR; Weng J; Rueschman M; Dudley KA; Loredo JS; Mossavar-Rahmani Y; Ramirez M; Ramos AR; Reid K; Seiger AN; Sotres-Alvarez D; Zee PC; Wang R
    Sleep; 2015 Sep; 38(9):1497-503. PubMed ID: 25845697
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The cortisol awakening response (CAR) in toddlers: Nap-dependent effects on the diurnal secretory pattern.
    Tribble RC; Dmitrieva J; Watamura SE; LeBourgeois MK
    Psychoneuroendocrinology; 2015 Oct; 60():46-56. PubMed ID: 26116959
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Napping reverses the salivary interleukin-6 and urinary norepinephrine changes induced by sleep restriction.
    Faraut B; Nakib S; Drogou C; Elbaz M; Sauvet F; De Bandt JP; Léger D
    J Clin Endocrinol Metab; 2015 Mar; 100(3):E416-26. PubMed ID: 25668196
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sleep/wake patterns derived from activity monitoring and maternal report for healthy 1- to 5-year-old children.
    Acebo C; Sadeh A; Seifer R; Tzischinsky O; Hafer A; Carskadon MA
    Sleep; 2005 Dec; 28(12):1568-77. PubMed ID: 16408417
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Randomized, controlled trial of a nonpharmacological intervention to improve abnormal sleep/wake patterns in nursing home residents.
    Alessi CA; Martin JL; Webber AP; Cynthia Kim E; Harker JO; Josephson KR
    J Am Geriatr Soc; 2005 May; 53(5):803-10. PubMed ID: 15877555
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reduced sleep duration and daytime naps in pregnant women in Taiwan.
    Tsai SY; Kuo LT; Lee CN; Lee YL; Landis CA
    Nurs Res; 2013; 62(2):99-105. PubMed ID: 23458907
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sleep-wake patterns in schizophrenia patients compared to healthy controls.
    Afonso P; Figueira ML; Paiva T
    World J Biol Psychiatry; 2014 Sep; 15(7):517-24. PubMed ID: 23316764
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sleep and wake are shared and transmitted between individuals with insomnia and their bed-sharing partners.
    Walters EM; Phillips AJK; Mellor A; Hamill K; Jenkins MM; Norton PJ; Baucom DH; Drummond SPA
    Sleep; 2020 Jan; 43(1):. PubMed ID: 31553049
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Application of a novel actigraphy algorithm to detect movement and sleep/wake patterns in children with autism spectrum disorder.
    Alder ML; Ye F; Run F; Bagai K; Fawkes DB; Peterson BT; Malow BA
    Sleep Med; 2020 Jul; 71():28-34. PubMed ID: 32454300
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the impact of arousals on the performance of sleep and wake classification using actigraphy.
    Fonseca P; Long X; Foussier J; Aarts RM
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6760-3. PubMed ID: 24111295
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Accuracy of computer algorithms and the human eye in scoring actigraphy.
    Boyne K; Sherry DD; Gallagher PR; Olsen M; Brooks LJ
    Sleep Breath; 2013 Mar; 17(1):411-7. PubMed ID: 22581483
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automatic sleep/wake scoring from body motion in bed: validation of a newly developed sensor placed under a mattress.
    Kogure T; Shirakawa S; Shimokawa M; Hosokawa Y
    J Physiol Anthropol; 2011; 30(3):103-9. PubMed ID: 21636953
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Is it on? An algorithm for discerning wrist-accelerometer non-wear times from sleep/wake activity.
    Kosmadopoulos A; Darwent D; Roach GD
    Chronobiol Int; 2016; 33(6):599-603. PubMed ID: 27096291
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A longitudinal study of infant 24-hour sleep: comparisons of sleep diary and accelerometer with different algorithms.
    Liu T; Benjamin-Neelon SE
    Sleep; 2023 Nov; 46(11):. PubMed ID: 37279933
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Video-Based Actigraphy for Monitoring Wake and Sleep in Healthy Infants: A Laboratory Study.
    Long X; Otte R; Sanden EV; Werth J; Tan T
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30832392
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.