BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 29073477)

  • 41. Liquid polystyrene: a room-temperature photocurable soft lithography compatible pour-and-cure-type polystyrene.
    Nargang TM; Brockmann L; Nikolov PM; Schild D; Helmer D; Keller N; Sachsenheimer K; Wilhelm E; Pires L; Dirschka M; Kolew A; Schneider M; Worgull M; Giselbrecht S; Neumann C; Rapp BE
    Lab Chip; 2014 Aug; 14(15):2698-708. PubMed ID: 24887072
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microfluidic devices for culturing primary mammalian neurons at low densities.
    Millet LJ; Stewart ME; Sweedler JV; Nuzzo RG; Gillette MU
    Lab Chip; 2007 Aug; 7(8):987-94. PubMed ID: 17653340
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Universal hydrophilic coating of thermoplastic polymers currently used in microfluidics.
    Zilio C; Sola L; Damin F; Faggioni L; Chiari M
    Biomed Microdevices; 2014 Feb; 16(1):107-14. PubMed ID: 24037663
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A durable and biocompatible ascorbic acid-based covalent coating method of polydimethylsiloxane for dynamic cell culture.
    Leivo J; Virjula S; Vanhatupa S; Kartasalo K; Kreutzer J; Miettinen S; Kallio P
    J R Soc Interface; 2017 Jul; 14(132):. PubMed ID: 28747398
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Selective functionalisation of PDMS-based photonic lab on a chip for biosensing.
    Ibarlucea B; Fernández-Sánchez C; Demming S; Büttgenbach S; Llobera A
    Analyst; 2011 Sep; 136(17):3496-502. PubMed ID: 21336349
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Low density cell culture of locust neurons in closed-channel microfluidic devices.
    Göbbels K; Thiebes AL; van Ooyen A; Schnakenberg U; Bräunig P
    J Insect Physiol; 2010 Aug; 56(8):1003-9. PubMed ID: 20566412
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Proliferation and multi-differentiation potentials of human mesenchymal stem cells on thermoresponsive PDMS surfaces grafted with PNIPAAm.
    Shi D; Ma D; Dong F; Zong C; Liu L; Shen D; Yuan W; Tong X; Chen H; Wang J
    Biosci Rep; 2009 Dec; 30(3):149-58. PubMed ID: 19445653
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rapid prototyping of cell culture microdevices using parylene-coated 3D prints.
    O'Grady BJ; Geuy MD; Kim H; Balotin KM; Allchin ER; Florian DC; Bute NN; Scott TE; Lowen GB; Fricker CM; Fitzgerald ML; Guelcher SA; Wikswo JP; Bellan LM; Lippmann ES
    Lab Chip; 2021 Dec; 21(24):4814-4822. PubMed ID: 34787148
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Patterning, integration and characterisation of polymer optical oxygen sensors for microfluidic devices.
    Nock V; Blaikie RJ; David T
    Lab Chip; 2008 Aug; 8(8):1300-7. PubMed ID: 18651072
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhancement of static incubation time in microfluidic cell culture platforms exploiting extended air-liquid interface.
    Bose N; Das T; Chakraborty D; Maiti TK; Chakraborty S
    Lab Chip; 2012 Jan; 12(1):69-73. PubMed ID: 22076598
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Adhesion of MRC-5 and A549 cells on poly(dimethylsiloxane) surface modified by proteins.
    Zuchowska A; Kwiatkowski P; Jastrzebska E; Chudy M; Dybko A; Brzozka Z
    Electrophoresis; 2016 Feb; 37(3):536-44. PubMed ID: 26311334
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Three-dimensional interconnected microporous poly(dimethylsiloxane) microfluidic devices.
    Yuen PK; Su H; Goral VN; Fink KA
    Lab Chip; 2011 Apr; 11(8):1541-4. PubMed ID: 21359315
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Self-adhesive microculture system for extended live cell imaging.
    Skommer J; McGuinness D; Wlodkowic D
    Biotech Histochem; 2011 Jun; 86(3):174-80. PubMed ID: 20109101
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Developing an ultra non-fouling SU-8 and PDMS hybrid microfluidic device by poly(amidoamine) engraftment.
    Qin Y; Yeh P; Hao X; Cao X
    Colloids Surf B Biointerfaces; 2015 Mar; 127():247-55. PubMed ID: 25687095
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Simple Surface Modification of Poly(dimethylsiloxane) via Surface Segregating Smart Polymers for Biomicrofluidics.
    Gökaltun A; Kang YBA; Yarmush ML; Usta OB; Asatekin A
    Sci Rep; 2019 May; 9(1):7377. PubMed ID: 31089162
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Polydimethylsiloxane/metal-organic frameworks coated stir bar sorptive extraction coupled to high performance liquid chromatography-ultraviolet detector for the determination of estrogens in environmental water samples.
    Hu C; He M; Chen B; Zhong C; Hu B
    J Chromatogr A; 2013 Oct; 1310():21-30. PubMed ID: 23992883
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Complex, multi-scale small intestinal topography replicated in cellular growth substrates fabricated via chemical vapor deposition of Parylene C.
    Koppes AN; Kamath M; Pfluger CA; Burkey DD; Dokmeci M; Wang L; Carrier RL
    Biofabrication; 2016 Aug; 8(3):035011. PubMed ID: 27550930
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A microfluidic cell culture array with various oxygen tensions.
    Peng CC; Liao WH; Chen YH; Wu CY; Tung YC
    Lab Chip; 2013 Aug; 13(16):3239-45. PubMed ID: 23784347
    [TBL] [Abstract][Full Text] [Related]  

  • 59. One-step in-mould modification of PDMS surfaces and its application in the fabrication of self-driven microfluidic channels.
    Fatona A; Chen Y; Reid M; Brook MA; Moran-Mirabal JM
    Lab Chip; 2015 Nov; 15(22):4322-30. PubMed ID: 26400365
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Generation of oxygen gradients in microfluidic devices for cell culture using spatially confined chemical reactions.
    Chen YA; King AD; Shih HC; Peng CC; Wu CY; Liao WH; Tung YC
    Lab Chip; 2011 Nov; 11(21):3626-33. PubMed ID: 21915399
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.