These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 29073496)

  • 1. Experimental study and numerical simulation on the structural and mechanical properties of Typha leaves through multimodal microscopy approaches.
    Liu J; Zhang Z; Yu Z; Liang Y; Li X; Ren L
    Micron; 2018 Jan; 104():37-44. PubMed ID: 29073496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fibre cables in the lacunae of Typha leaves contribute to a tensegrity structure.
    Witztum A; Wayne R
    Ann Bot; 2014 Apr; 113(5):789-97. PubMed ID: 24532647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Structure and Flexural Properties of
    Liu J; Zhang Z; Yu Z; Liang Y; Li X; Ren L
    Appl Bionics Biomech; 2017; 2017():1249870. PubMed ID: 29123373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating micro CT indices, CT imaging and computational modelling to assess the mechanical performance of fluoride treated bone.
    Sreenivasan D; Watson M; Callon K; Dray M; Das R; Grey A; Cornish J; Fernandez J
    Med Eng Phys; 2013 Dec; 35(12):1793-800. PubMed ID: 23993994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lignified and nonlignified fiber cables in the lacunae of Typha angustifolia.
    Witztum A; Wayne R
    Protoplasma; 2016 Nov; 253(6):1589-1592. PubMed ID: 26608211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization and quantification of Pb and nutrients in Typha latifolia by micro-PIXE.
    Lyubenova L; Pongrac P; Vogel-Mikuš K; Mezek GK; Vavpetič P; Grlj N; Kump P; Nečemer M; Regvar M; Pelicon P; Schröder P
    Metallomics; 2012 Apr; 4(4):333-41. PubMed ID: 22370692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 3D study of the relationship between leaf vein structure and mechanical function.
    Pierantoni M; Brumfeld V; Addadi L; Weiner S
    Acta Biomater; 2019 Apr; 88():111-119. PubMed ID: 30779998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spiralling upward.
    Schulgasser K; Witztum A
    J Theor Biol; 2004 Sep; 230(2):275-80. PubMed ID: 15302559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of microstructure on mechanical properties of corn cob.
    Zou Y; Fu J; Chen Z; Ren L
    Micron; 2021 Jul; 146():103070. PubMed ID: 33971478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation on Microstructure of Beetle Elytra and Energy Absorption Properties of Bio-Inspired Honeycomb Thin-Walled Structure under Axial Dynamic Crushing.
    Du J; Hao P
    Nanomaterials (Basel); 2018 Aug; 8(9):. PubMed ID: 30150603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anatomical traits related to stress in high density populations of Typha angustifolia L. (Typhaceae).
    Corrêa FF; Pereira MP; Madail RH; Santos BR; Barbosa S; Castro EM; Pereira FJ
    Braz J Biol; 2017 Mar; 77(1):52-59. PubMed ID: 27382995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Observation on pollen morphology of six species of Typha (Puhuang) by SEM].
    Liu B; Lu Y
    Zhong Yao Cai; 1997 Oct; 20(10):497-9. PubMed ID: 12572518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioinspirational understanding of flexural performance in hedgehog spines.
    Drol CJ; Kennedy EB; Hsiung BK; Swift NB; Tan KT
    Acta Biomater; 2019 Aug; 94():553-564. PubMed ID: 31129360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural monitoring and modeling of the mechanical deformation of three-dimensional printed poly(ε-caprolactone) scaffolds.
    Ribeiro JFM; Oliveira SM; Alves JL; Pedro AJ; Reis RL; Fernandes EM; Mano JF
    Biofabrication; 2017 May; 9(2):025015. PubMed ID: 28349900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal and accumulation of cadmium and lead by Typha latifolia exposed to single and mixed metal solutions.
    Alonso-Castro AJ; Carranza-Alvarez C; Alfaro-De la Torre MC; Chávez-Guerrero L; García-De la Cruz RF
    Arch Environ Contam Toxicol; 2009 Nov; 57(4):688-96. PubMed ID: 19536587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple Performance Evaluation of Bionic Thin-Walled Structures with Different Cross Sections considering Complex Conditions.
    Zhang H; Huang Z; Li T; Bao C; Zhang L
    J Environ Public Health; 2022; 2022():2220633. PubMed ID: 36213039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiscale computational and experimental approaches to elucidate bone and ligament mechanobiology using the ulna-radius-interosseous membrane construct as a model system.
    Knothe Tate ML; Tami AE; Netrebko P; Milz S; Docheva D
    Technol Health Care; 2012; 20(5):363-78. PubMed ID: 23079942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The hydrophobicity of a lotus leaf: a nanomechanical and computational approach.
    Balani K; Batista RG; Lahiri D; Agarwal A
    Nanotechnology; 2009 Jul; 20(30):305707. PubMed ID: 19584417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation on crashworthiness and mechanism of a bionic antler-like gradient thin-walled structure.
    Wei Z; Zhang X; Zheng Y
    Bioinspir Biomim; 2023 Jan; 18(2):. PubMed ID: 36538832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of microstructure characteristics and mechanical properties of beetle forewings, Allomyrina dichotoma.
    Zhou M; Huang D; Su X; Zhong J; Hassanein MF; An L
    Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110317. PubMed ID: 31761217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.