These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 29073555)
1. Effects of synergistic and non-synergistic anions on the iron binding site from serum transferrin: A molecular dynamic simulation analysis. Ghanbari Z; Housaindokht MR; Bozorgmehr MR; Izadyar M J Mol Graph Model; 2017 Nov; 78():176-186. PubMed ID: 29073555 [TBL] [Abstract][Full Text] [Related]
2. Anion binding properties of the transferrins. Implications for function. Harris WR Biochim Biophys Acta; 2012 Mar; 1820(3):348-61. PubMed ID: 21846492 [TBL] [Abstract][Full Text] [Related]
3. Dual role of Lys206-Lys296 interaction in human transferrin N-lobe: iron-release trigger and anion-binding site. He QY; Mason AB; Tam BM; MacGillivray RT; Woodworth RC Biochemistry; 1999 Jul; 38(30):9704-11. PubMed ID: 10423249 [TBL] [Abstract][Full Text] [Related]
4. The effect of glycosylation on the transferrin structure: A molecular dynamic simulation analysis. Ghanbari Z; Housaindokht MR; Bozorgmehr MR; Izadyar M J Theor Biol; 2016 Sep; 404():73-81. PubMed ID: 27235585 [TBL] [Abstract][Full Text] [Related]
5. Substitution of carbonate by non-physiological synergistic anion modulates the stability and iron release kinetics of serum transferrin. Kumar R; Sharma D; Kumar N; Kumari B; Shabnam ; Kumar S; Kumar R Biochim Biophys Acta Proteins Proteom; 2023 Jan; 1871(1):140856. PubMed ID: 36252939 [TBL] [Abstract][Full Text] [Related]
6. Anion binding by transferrins: importance of second-shell effects revealed by the crystal structure of oxalate-substituted diferric lactoferrin. Baker HM; Anderson BF; Brodie AM; Shongwe MS; Smith CA; Baker EN Biochemistry; 1996 Jul; 35(28):9007-13. PubMed ID: 8703903 [TBL] [Abstract][Full Text] [Related]
7. The position of arginine 124 controls the rate of iron release from the N-lobe of human serum transferrin. A structural study. Adams TE; Mason AB; He QY; Halbrooks PJ; Briggs SK; Smith VC; MacGillivray RT; Everse SJ J Biol Chem; 2003 Feb; 278(8):6027-33. PubMed ID: 12458193 [TBL] [Abstract][Full Text] [Related]
8. The synergistic anion-binding sites of human transferrin: chemical and physiological effects of site-directed mutagenesis. Zak O; Ikuta K; Aisen P Biochemistry; 2002 Jun; 41(23):7416-23. PubMed ID: 12044175 [TBL] [Abstract][Full Text] [Related]
9. Synergistic anion-directed coordination of ferric and cupric ions to bovine serum transferrin--an inorganic perspective. Shongwe MS; Smith R; Marques HM; van Wyk JA J Inorg Biochem; 2004 Feb; 98(2):199-208. PubMed ID: 14729300 [TBL] [Abstract][Full Text] [Related]
10. Computational approaches for deciphering the equilibrium and kinetic properties of iron transport proteins. Abdizadeh H; Atilgan AR; Atilgan C; Dedeoglu B Metallomics; 2017 Nov; 9(11):1513-1533. PubMed ID: 28967944 [TBL] [Abstract][Full Text] [Related]
11. Allosteric effects of sulfonate anions on the rates of iron release from serum transferrin. Sharma R; Harris WR J Inorg Biochem; 2011 Sep; 105(9):1148-55. PubMed ID: 21708099 [TBL] [Abstract][Full Text] [Related]
12. Glycoproteomics meets thermodynamics: A calorimetric study of the effect of sialylation and synergistic anion on the binding of iron to human serum transferrin. Borko V; Friganović T; Weitner T J Inorg Biochem; 2023 Jul; 244():112207. PubMed ID: 37054508 [TBL] [Abstract][Full Text] [Related]
13. The oxalate effect on release of iron from human serum transferrin explained. Halbrooks PJ; Mason AB; Adams TE; Briggs SK; Everse SJ J Mol Biol; 2004 May; 339(1):217-26. PubMed ID: 15123433 [TBL] [Abstract][Full Text] [Related]
14. The pH-induced release of iron from transferrin investigated with a continuum electrostatic model. Lee DA; Goodfellow JM Biophys J; 1998 Jun; 74(6):2747-59. PubMed ID: 9635730 [TBL] [Abstract][Full Text] [Related]
15. Identification of possible kinetically significant anion-binding sites in human serum transferrin using molecular modeling strategies. Amin EA; Harris WR; Welsh WJ Biopolymers; 2004 Feb; 73(2):205-15. PubMed ID: 14755578 [TBL] [Abstract][Full Text] [Related]
16. Mutational analysis of C-lobe ligands of human serum transferrin: insights into the mechanism of iron release. Mason AB; Halbrooks PJ; James NG; Connolly SA; Larouche JR; Smith VC; MacGillivray RT; Chasteen ND Biochemistry; 2005 Jun; 44(22):8013-21. PubMed ID: 15924420 [TBL] [Abstract][Full Text] [Related]
17. The synergistic binding of anions and Fe3+ by transferrin. Implications for the interlocking sites hypothesis. Schlabach MR; Bates GW J Biol Chem; 1975 Mar; 250(6):2182-8. PubMed ID: 803968 [TBL] [Abstract][Full Text] [Related]
18. The influence of the synergistic anion on iron chelation by ferric binding protein, a bacterial transferrin. Dhungana S; Taboy CH; Anderson DS; Vaughan KG; Aisen P; Mietzner TA; Crumbliss AL Proc Natl Acad Sci U S A; 2003 Apr; 100(7):3659-64. PubMed ID: 12646708 [TBL] [Abstract][Full Text] [Related]
19. Effect of the synergistic anion on electron paramagnetic resonance spectra of iron-transferrin anion complexes is consistent with bidentate binding of the anion. Dubach J; Gaffney BJ; More K; Eaton GR; Eaton SS Biophys J; 1991 May; 59(5):1091-100. PubMed ID: 1651123 [TBL] [Abstract][Full Text] [Related]
20. The anion requirement for iron release from transferrin is preserved in the receptor-transferrin complex. Egan TJ; Zak O; Aisen P Biochemistry; 1993 Aug; 32(32):8162-7. PubMed ID: 8347616 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]