These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 29073569)
1. Seasonal variability of natural water chemistry affects the fate and behaviour of silver nanoparticles. Ellis LA; Baalousha M; Valsami-Jones E; Lead JR Chemosphere; 2018 Jan; 191():616-625. PubMed ID: 29073569 [TBL] [Abstract][Full Text] [Related]
2. Stability of single dispersed silver nanoparticles in natural and synthetic freshwaters: Effects of dissolved oxygen. Zou X; Li P; Lou J; Fu X; Zhang H Environ Pollut; 2017 Nov; 230():674-682. PubMed ID: 28715772 [TBL] [Abstract][Full Text] [Related]
3. Water chemistry controlled aggregation and photo-transformation of silver nanoparticles in environmental waters. Yin Y; Yang X; Zhou X; Wang W; Yu S; Liu J; Jiang G J Environ Sci (China); 2015 Aug; 34():116-25. PubMed ID: 26257354 [TBL] [Abstract][Full Text] [Related]
4. Environmental fate and behavior of silver nanoparticles in natural estuarine systems. Li P; Su M; Wang X; Zou X; Sun X; Shi J; Zhang H J Environ Sci (China); 2020 Feb; 88():248-259. PubMed ID: 31862066 [TBL] [Abstract][Full Text] [Related]
5. The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems. Angel BM; Batley GE; Jarolimek CV; Rogers NJ Chemosphere; 2013 Sep; 93(2):359-65. PubMed ID: 23732009 [TBL] [Abstract][Full Text] [Related]
6. Impact of surface coating and environmental conditions on the fate and transport of silver nanoparticles in the aquatic environment. Ellis LA; Valsami-Jones E; Lead JR; Baalousha M Sci Total Environ; 2016 Oct; 568():95-106. PubMed ID: 27289392 [TBL] [Abstract][Full Text] [Related]
7. Silver release from silver nanoparticles in natural waters. Dobias J; Bernier-Latmani R Environ Sci Technol; 2013 May; 47(9):4140-6. PubMed ID: 23517230 [TBL] [Abstract][Full Text] [Related]
8. Influence of hardness on the bioavailability of silver to a freshwater snail after waterborne exposure to silver nitrate and silver nanoparticles. Stoiber T; Croteau MN; Römer I; Tejamaya M; Lead JR; Luoma SN Nanotoxicology; 2015; 9(7):918-27. PubMed ID: 25676617 [TBL] [Abstract][Full Text] [Related]
9. Transport and long-term release behavior of polymer-coated silver nanoparticles in saturated quartz sand: The impacts of input concentration, grain size and flow rate. Hou J; Zhang M; Wang P; Wang C; Miao L; Xu Y; You G; Lv B; Yang Y; Liu Z Water Res; 2017 Dec; 127():86-95. PubMed ID: 29035769 [TBL] [Abstract][Full Text] [Related]
10. Highly dynamic PVP-coated silver nanoparticles in aquatic environments: chemical and morphology change induced by oxidation of Ag(0) and reduction of Ag(+). Yu SJ; Yin YG; Chao JB; Shen MH; Liu JF Environ Sci Technol; 2014; 48(1):403-11. PubMed ID: 24328224 [TBL] [Abstract][Full Text] [Related]
11. Modeling nanosilver transformations in freshwater sediments. Dale AL; Lowry GV; Casman EA Environ Sci Technol; 2013 Nov; 47(22):12920-8. PubMed ID: 24147627 [TBL] [Abstract][Full Text] [Related]
12. Transformations of citrate and Tween coated silver nanoparticles reacted with Na₂S. Baalousha M; Arkill KP; Romer I; Palmer RE; Lead JR Sci Total Environ; 2015 Jan; 502():344-53. PubMed ID: 25262296 [TBL] [Abstract][Full Text] [Related]
13. Silver nanoparticle behaviour in lake water depends on their surface coating. Jiménez-Lamana J; Slaveykova VI Sci Total Environ; 2016 Dec; 573():946-953. PubMed ID: 27599058 [TBL] [Abstract][Full Text] [Related]
14. Citrate-Coated Silver Nanoparticles Interactions with Effluent Organic Matter: Influence of Capping Agent and Solution Conditions. Gutierrez L; Aubry C; Cornejo M; Croue JP Langmuir; 2015 Aug; 31(32):8865-72. PubMed ID: 26230840 [TBL] [Abstract][Full Text] [Related]
15. Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles: part 2-toxicity and Ag speciation. Bone AJ; Colman BP; Gondikas AP; Newton KM; Harrold KH; Cory RM; Unrine JM; Klaine SJ; Matson CW; Di Giulio RT Environ Sci Technol; 2012 Jul; 46(13):6925-33. PubMed ID: 22680837 [TBL] [Abstract][Full Text] [Related]
16. Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles. Part 1. Aggregation and dissolution. Unrine JM; Colman BP; Bone AJ; Gondikas AP; Matson CW Environ Sci Technol; 2012 Jul; 46(13):6915-24. PubMed ID: 22452441 [TBL] [Abstract][Full Text] [Related]
17. Persistence of singly dispersed silver nanoparticles in natural freshwaters, synthetic seawater, and simulated estuarine waters. Chinnapongse SL; MacCuspie RI; Hackley VA Sci Total Environ; 2011 May; 409(12):2443-50. PubMed ID: 21481439 [TBL] [Abstract][Full Text] [Related]
18. Long-term transformation and fate of manufactured ag nanoparticles in a simulated large scale freshwater emergent wetland. Lowry GV; Espinasse BP; Badireddy AR; Richardson CJ; Reinsch BC; Bryant LD; Bone AJ; Deonarine A; Chae S; Therezien M; Colman BP; Hsu-Kim H; Bernhardt ES; Matson CW; Wiesner MR Environ Sci Technol; 2012 Jul; 46(13):7027-36. PubMed ID: 22463850 [TBL] [Abstract][Full Text] [Related]
19. Silver nanoparticles coated with natural polysaccharides as models to study AgNP aggregation kinetics using UV-Visible spectrophotometry upon discharge in complex environments. Lodeiro P; Achterberg EP; Pampín J; Affatati A; El-Shahawi MS Sci Total Environ; 2016 Jan; 539():7-16. PubMed ID: 26363390 [TBL] [Abstract][Full Text] [Related]
20. Transport, retention, and long-term release behavior of polymer-coated silver nanoparticles in saturated quartz sand: The impact of natural organic matters and electrolyte. Hou J; Zhang M; Wang P; Wang C; Miao L; Xu Y; You G; Lv B; Yang Y; Liu Z Environ Pollut; 2017 Oct; 229():49-59. PubMed ID: 28577382 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]