BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 29073579)

  • 1. Removal of organic micropollutants in waste stabilisation ponds: A review.
    Gruchlik Y; Linge K; Joll C
    J Environ Manage; 2018 Jan; 206():202-214. PubMed ID: 29073579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Occurrence, fate and removal of pharmaceuticals, personal care products and pesticides in wastewater stabilization ponds and receiving rivers in the Nzoia Basin, Kenya.
    K'oreje KO; Kandie FJ; Vergeynst L; Abira MA; Van Langenhove H; Okoth M; Demeestere K
    Sci Total Environ; 2018 Oct; 637-638():336-348. PubMed ID: 29751313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sterols indicate water quality and wastewater treatment efficiency.
    Reichwaldt ES; Ho WY; Zhou W; Ghadouani A
    Water Res; 2017 Jan; 108():401-411. PubMed ID: 27839832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Occurrence and removal of butyltin compounds in a waste stabilisation pond of a domestic waste water treatment plant of a rural French town.
    Sabah A; Bancon-Montigny C; Rodier C; Marchand P; Delpoux S; Ijjaali M; Tournoud MG
    Chemosphere; 2016 Feb; 144():2497-506. PubMed ID: 26624956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of estrone, 17alpha-ethinylestradiol, and 17beta-estradiol in algae and duckweed-based wastewater treatment systems.
    Shi W; Wang L; Rousseau DP; Lens PN
    Environ Sci Pollut Res Int; 2010 May; 17(4):824-33. PubMed ID: 20213308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Occurrence and removal of micropollutants in full-scale aerobic, anaerobic and facultative wastewater treatment plants in Brazil.
    Komolafe O; Mrozik W; Dolfing J; Acharya K; Vassalle L; Mota CR; Davenport R
    J Environ Manage; 2021 Jun; 287():112286. PubMed ID: 33706091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Upgrading of waste stabilization ponds using a low-cost small-scale fine bubble diffused aeration system.
    Vagheei R
    Water Sci Technol; 2021 Nov; 84(10-11):3104-3121. PubMed ID: 34850715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parasite removal by natural wastewater treatment systems: performance of waste stabilisation ponds and constructed wetlands.
    Stott R; Mayr E; Mara DD
    Water Sci Technol; 2003; 48(2):97-104. PubMed ID: 14510199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment.
    Luo Y; Guo W; Ngo HH; Nghiem LD; Hai FI; Zhang J; Liang S; Wang XC
    Sci Total Environ; 2014 Mar; 473-474():619-41. PubMed ID: 24394371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring Microbial Populations and Antibiotic Resistance Gene Enrichment Associated with Arctic Waste Stabilization Ponds.
    Gromala M; Neufeld JD; McConkey BJ
    Appl Environ Microbiol; 2021 Mar; 87(7):. PubMed ID: 33452030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination and occurrence of organic micropollutants in reverse osmosis treatment for advanced water reuse.
    Gomez V; Majamaa K; Pocurull E; Borrull F
    Water Sci Technol; 2012; 66(1):61-71. PubMed ID: 22678201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical characteristics of waste stabilization ponds: recommendations for monitoring.
    Davies-Colley RJ; Craggs RJ; Park J; Nagels JW
    Water Sci Technol; 2005; 51(12):153-61. PubMed ID: 16114678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sludge accumulation and distribution impact the hydraulic performance in waste stabilisation ponds.
    Coggins LX; Ghisalberti M; Ghadouani A
    Water Res; 2017 Mar; 110():354-365. PubMed ID: 28062073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular evaluation of microalgal communities in full-scale waste stabilisation ponds.
    Eland LE; Davenport RJ; Santos ABD; Mota Filho CR
    Environ Technol; 2019 Jun; 40(15):1969-1976. PubMed ID: 29400147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disinfection and removal of human pathogenic bacteria in arctic waste stabilization ponds.
    Huang Y; Truelstrup Hansen L; Ragush CM; Jamieson RC
    Environ Sci Pollut Res Int; 2018 Nov; 25(33):32881-32893. PubMed ID: 28353112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance evaluation of waste stabilization ponds on removal of Listeria spp.: a case study of Isfahan, Iran.
    Taherkhani A; Attar HM; Mirzaee SA; Ahmadmoazzam M; Jaafarzadeh N; Hashemi F; Jalali M
    J Water Health; 2018 Aug; 16(4):614-621. PubMed ID: 30067242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Super-fine powdered activated carbon (SPAC) for efficient removal of micropollutants from wastewater treatment plant effluent.
    Bonvin F; Jost L; Randin L; Bonvin E; Kohn T
    Water Res; 2016 Mar; 90():90-99. PubMed ID: 26724443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photodegradation and sorption govern tetracycline removal during wastewater treatment in algal ponds.
    Norvill ZN; Toledo-Cervantes A; Blanco S; Shilton A; Guieysse B; Muñoz R
    Bioresour Technol; 2017 May; 232():35-43. PubMed ID: 28214443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micropollutants removal and health risk reduction in a water reclamation and ecological reuse system.
    Ma XY; Li Q; Wang XC; Wang Y; Wang D; Ngo HH
    Water Res; 2018 Jul; 138():272-281. PubMed ID: 29614455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathways of organic micropollutants degradation in atmospheric pressure plasma processing - A review.
    Topolovec B; Škoro N; Puаč N; Petrovic M
    Chemosphere; 2022 May; 294():133606. PubMed ID: 35033511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.