BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 29073611)

  • 1. Genomic Characterization of Chromosomal Insertions: Insights into the Mechanisms Underlying Chromothripsis.
    Kato T; Ouchi Y; Inagaki H; Makita Y; Mizuno S; Kajita M; Ikeda T; Takeuchi K; Kurahashi H
    Cytogenet Genome Res; 2017; 153(1):1-9. PubMed ID: 29073611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deciphering the complexity of simple chromosomal insertions by genome sequencing.
    Dong Z; Chau MHK; Zhang Y; Dai P; Zhu X; Leung TY; Kong X; Kwok YK; Stankiewicz P; Cheung SW; Choy KW
    Hum Genet; 2021 Feb; 140(2):361-380. PubMed ID: 32728808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Replicative and non-replicative mechanisms in the formation of clustered CNVs are indicated by whole genome characterization.
    Nazaryan-Petersen L; Eisfeldt J; Pettersson M; Lundin J; Nilsson D; Wincent J; Lieden A; Lovmar L; Ottosson J; Gacic J; Mäkitie O; Nordgren A; Vezzi F; Wirta V; Käller M; Hjortshøj TD; Jespersgaard C; Houssari R; Pignata L; Bak M; Tommerup N; Lundberg ES; Tümer Z; Lindstrand A
    PLoS Genet; 2018 Nov; 14(11):e1007780. PubMed ID: 30419018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromothripsis-like chromosomal rearrangements induced by ionizing radiation using proton microbeam irradiation system.
    Morishita M; Muramatsu T; Suto Y; Hirai M; Konishi T; Hayashi S; Shigemizu D; Tsunoda T; Moriyama K; Inazawa J
    Oncotarget; 2016 Mar; 7(9):10182-92. PubMed ID: 26862731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rebuilding Chromosomes After Catastrophe: Emerging Mechanisms of Chromothripsis.
    Ly P; Cleveland DW
    Trends Cell Biol; 2017 Dec; 27(12):917-930. PubMed ID: 28899600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Very short DNA segments can be detected and handled by the repair machinery during germline chromothriptic chromosome reassembly.
    Slamova Z; Nazaryan-Petersen L; Mehrjouy MM; Drabova J; Hancarova M; Marikova T; Novotna D; Vlckova M; Vlckova Z; Bak M; Zemanova Z; Tommerup N; Sedlacek Z
    Hum Mutat; 2018 May; 39(5):709-716. PubMed ID: 29405539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unbalanced translocations arise from diverse mutational mechanisms including chromothripsis.
    Weckselblatt B; Hermetz KE; Rudd MK
    Genome Res; 2015 Jul; 25(7):937-47. PubMed ID: 26070663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constitutional chromothripsis rearrangements involve clustered double-stranded DNA breaks and nonhomologous repair mechanisms.
    Kloosterman WP; Tavakoli-Yaraki M; van Roosmalen MJ; van Binsbergen E; Renkens I; Duran K; Ballarati L; Vergult S; Giardino D; Hansson K; Ruivenkamp CA; Jager M; van Haeringen A; Ippel EF; Haaf T; Passarge E; Hochstenbach R; Menten B; Larizza L; Guryev V; Poot M; Cuppen E
    Cell Rep; 2012 Jun; 1(6):648-55. PubMed ID: 22813740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A pipeline for complete characterization of complex germline rearrangements from long DNA reads.
    Mitsuhashi S; Ohori S; Katoh K; Frith MC; Matsumoto N
    Genome Med; 2020 Jul; 12(1):67. PubMed ID: 32731881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromothripsis: potential origin in gametogenesis and preimplantation cell divisions. A review.
    Pellestor F; Gatinois V; Puechberty J; Geneviève D; Lefort G
    Fertil Steril; 2014 Dec; 102(6):1785-96. PubMed ID: 25439810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-read sequence analysis for clustered genomic copy number aberrations revealed architectures of intricately intertwined rearrangements.
    Tamura T; Yamamoto Shimojima K; Okamoto N; Yagasaki H; Morioka I; Kanno H; Minakuchi Y; Toyoda A; Yamamoto T
    Am J Med Genet A; 2023 Jan; 191(1):112-119. PubMed ID: 36282026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms for Complex Chromosomal Insertions.
    Gu S; Szafranski P; Akdemir ZC; Yuan B; Cooper ML; Magriñá MA; Bacino CA; Lalani SR; Breman AM; Smith JL; Patel A; Song RH; Bi W; Cheung SW; Carvalho CM; Stankiewicz P; Lupski JR
    PLoS Genet; 2016 Nov; 12(11):e1006446. PubMed ID: 27880765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transient multifocal genomic crisis creating chromothriptic and non-chromothriptic rearrangements in prezygotic testicular germ cells.
    Hattori A; Okamura K; Terada Y; Tanaka R; Katoh-Fukui Y; Matsubara Y; Matsubara K; Kagami M; Horikawa R; Fukami M
    BMC Med Genomics; 2019 May; 12(1):77. PubMed ID: 31138192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Breakpoint features of genomic rearrangements in neuroblastoma with unbalanced translocations and chromothripsis.
    Boeva V; Jouannet S; Daveau R; Combaret V; Pierre-Eugène C; Cazes A; Louis-Brennetot C; Schleiermacher G; Ferrand S; Pierron G; Lermine A; Rio Frio T; Raynal V; Vassal G; Barillot E; Delattre O; Janoueix-Lerosey I
    PLoS One; 2013; 8(8):e72182. PubMed ID: 23991058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromothripsis: how does such a catastrophic event impact human reproduction?
    Pellestor F
    Hum Reprod; 2014 Mar; 29(3):388-93. PubMed ID: 24452388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Distinct Class of Chromoanagenesis Events Characterized by Focal Copy Number Gains.
    Masset H; Hestand MS; Van Esch H; Kleinfinger P; Plaisancié J; Afenjar A; Molignier R; Schluth-Bolard C; Sanlaville D; Vermeesch JR
    Hum Mutat; 2016 Jul; 37(7):661-8. PubMed ID: 26936114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic Chaos (Multiple Copy Number Variations and Structural Reorganization) Detected in Two Prenatal Cases.
    Lloveras E; Canellas A; Plaja A; Barranco L; Fernández D; Mendez B; Piqué M; de la Iglesia C; Palau N; Costa M; Herrero M; Yeste D; Auge M; Puig L; Pérez C
    Cytogenet Genome Res; 2021; 161(5):236-242. PubMed ID: 34274931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analyses of breakpoint junctions of complex genomic rearrangements comprising multiple consecutive microdeletions by nanopore sequencing.
    Imaizumi T; Yamamoto-Shimojima K; Yanagishita T; Ondo Y; Yamamoto T
    J Hum Genet; 2020 Sep; 65(9):735-741. PubMed ID: 32355308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing.
    Cortés-Ciriano I; Lee JJ; Xi R; Jain D; Jung YL; Yang L; Gordenin D; Klimczak LJ; Zhang CZ; Pellman DS; ; Park PJ;
    Nat Genet; 2020 Mar; 52(3):331-341. PubMed ID: 32025003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Role for Retrotransposons in Chromothripsis.
    Hancks DC
    Methods Mol Biol; 2018; 1769():169-181. PubMed ID: 29564824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.