These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 29074247)

  • 1. Climatic and dam-induced impacts on river water temperature: Assessment and management implications.
    Kędra M; Wiejaczka Ł
    Sci Total Environ; 2018 Jun; 626():1474-1483. PubMed ID: 29074247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A probabilistic modeling framework for assessing the impacts of large reservoirs on river thermal regimes - A case of the Yangtze River.
    Tao Y; Wang Y; Wang D; Ni L; Wu J
    Environ Res; 2020 Apr; 183():109221. PubMed ID: 32059160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dams in the Cadillac Desert: downstream effects in a geomorphic context.
    Sabo JL; Bestgen K; Graf W; Sinha T; Wohl EE
    Ann N Y Acad Sci; 2012 Feb; 1249():227-46. PubMed ID: 22329918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impacts of water resources development on flow regimes in the Brazos River.
    Vogl AL; Lopes VL
    Environ Monit Assess; 2009 Oct; 157(1-4):331-45. PubMed ID: 18819012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of the Dam Construction on the Downstream Thermal Conditions of the Yangtze River.
    He T; Deng Y; Tuo Y; Yang Y; Liang N
    Int J Environ Res Public Health; 2020 Apr; 17(8):. PubMed ID: 32344745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrative assessment of river damming impacts on aquatic fauna in a Portuguese reservoir.
    Santos RMB; Sanches Fernandes LF; Cortes RMV; Varandas SGP; Jesus JJB; Pacheco FAL
    Sci Total Environ; 2017 Dec; 601-602():1108-1118. PubMed ID: 28599367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal signatures identify the influence of dams and ponds on stream temperature at the regional scale.
    Seyedhashemi H; Moatar F; Vidal JP; Diamond JS; Beaufort A; Chandesris A; Valette L
    Sci Total Environ; 2021 Apr; 766():142667. PubMed ID: 33601666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identify temporal trend of air temperature and its impact on forest stream flow in Lower Mississippi River Alluvial Valley using wavelet analysis.
    Ouyang Y; Parajuli PB; Li Y; Leininger TD; Feng G
    J Environ Manage; 2017 Aug; 198(Pt 2):21-31. PubMed ID: 28499157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Meltwater temperature in streams draining Alpine glaciers.
    Williamson RJ; Entwistle NS; Collins DN
    Sci Total Environ; 2019 Mar; 658():777-786. PubMed ID: 30583173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water storage decisions will determine the distribution and persistence of imperiled river fishes.
    Dibble KL; Yackulic CB; Kennedy TA; Bestgen KR; Schmidt JC
    Ecol Appl; 2021 Mar; 31(2):e02279. PubMed ID: 33336387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reservoir effects on the variations of the water temperature in the upper Yellow River, China, using principal component analysis.
    Ren L; Song C; Wu W; Guo M; Zhou X
    J Environ Manage; 2020 May; 262():110339. PubMed ID: 32250816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupled reservoir-river systems: Lessons from an integrated aquatic ecosystem assessment.
    Tranmer AW; Weigel D; Marti CL; Vidergar D; Benjankar R; Tonina D; Goodwin P; Imberger J
    J Environ Manage; 2020 Apr; 260():110107. PubMed ID: 32090820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in the hydrodynamics of a mountain river induced by dam reservoir backwater.
    Liro M; Ruiz-Villanueva V; Mikuś P; Wyżga B; Bladé Castellet E
    Sci Total Environ; 2020 Nov; 744():140555. PubMed ID: 32755769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dam operations may improve aquatic habitat and offset negative effects of climate change.
    Benjankar R; Tonina D; McKean JA; Sohrabi MM; Chen Q; Vidergar D
    J Environ Manage; 2018 May; 213():126-134. PubMed ID: 29482093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acceleration of rises in the level of rivers induced by rising air temperatures in a cold climate.
    Higashino M; Aso D; Stefan HG
    Sci Total Environ; 2021 Nov; 794():148553. PubMed ID: 34218148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the impact of a downscaled climate change simulation on the fish fauna in an Inner-Alpine River.
    Matulla C; Schmutz S; Melcher A; Gerersdorfer T; Haas P
    Int J Biometeorol; 2007 Dec; 52(2):127-37. PubMed ID: 17587065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation and trend analysis of the water quality monitoring daily data in Nestos River Delta. Contribution to the sustainable management and results for the years 2000-2002.
    Psilovikos A; Margoni S; Psilovikos A
    Environ Monit Assess; 2006 May; 116(1-3):543-62. PubMed ID: 16779611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-scale variability of hydrothermal regime based on wavelet analysis - The middle reaches of the Yangtze River, China.
    Guo W; He N; Ban X; Wang H
    Sci Total Environ; 2022 Oct; 841():156598. PubMed ID: 35690198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How Big of an Effect Do Small Dams Have? Using Geomorphological Footprints to Quantify Spatial Impact of Low-Head Dams and Identify Patterns of Across-Dam Variation.
    Fencl JS; Mather ME; Costigan KH; Daniels MD
    PLoS One; 2015; 10(11):e0141210. PubMed ID: 26540105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal renaturation of rivers in the post-industrial age - An example of the Przemsza River basin (Poland).
    Marszelewski W; Pius B
    Sci Total Environ; 2021 May; 770():145207. PubMed ID: 33515885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.