These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 29074851)

  • 1. Preparing entangled states between two NV centers via the damping of nanomechanical resonators.
    Li XX; Li PB; Ma SL; Li FL
    Sci Rep; 2017 Oct; 7(1):14116. PubMed ID: 29074851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum state engineering with nitrogen-vacancy centers coupled to low-Q microresonator.
    Cheng LY; Wang HF; Zhang S; Yeon KH
    Opt Express; 2013 Mar; 21(5):5988-97. PubMed ID: 23482167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward Programmable Quantum Processors Based on Spin Qubits with Mechanically Mediated Interactions and Transport.
    Fung F; Rosenfeld E; Schaefer JD; Kabcenell A; Gieseler J; Zhou TX; Madhavan T; Aslam N; Yacoby A; Lukin MD
    Phys Rev Lett; 2024 Jun; 132(26):263602. PubMed ID: 38996281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification of an unpolarized spin ensemble into entangled singlet pairs.
    Greiner JN; Dasari DBR; Wrachtrup J
    Sci Rep; 2017 Apr; 7(1):529. PubMed ID: 28373720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing tiny motions of nanomechanical resonators: classical or quantum mechanical?
    Wei LF; Liu YX; Sun CP; Nori F
    Phys Rev Lett; 2006 Dec; 97(23):237201. PubMed ID: 17280237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct measurement of nonlocal entanglement of two-qubit spin quantum states.
    Cheng LY; Yang GH; Guo Q; Wang HF; Zhang S
    Sci Rep; 2016 Jan; 6():19482. PubMed ID: 26778340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of macroscopic Schrödinger cat state in diamond mechanical resonator.
    Hou Q; Yang W; Chen C; Yin Z
    Sci Rep; 2016 Nov; 6():37542. PubMed ID: 27876846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrogen vacancy centers in diamond as angle-squared sensors.
    Dhingra S; D'Urso B
    J Phys Condens Matter; 2017 May; 29(18):185501. PubMed ID: 28290373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid Quantum Device with Nitrogen-Vacancy Centers in Diamond Coupled to Carbon Nanotubes.
    Li PB; Xiang ZL; Rabl P; Nori F
    Phys Rev Lett; 2016 Jul; 117(1):015502. PubMed ID: 27419577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Waveguide-integrated single-crystalline GaP resonators on diamond.
    Thomas N; Barbour RJ; Song Y; Lee ML; Fu KM
    Opt Express; 2014 Jun; 22(11):13555-64. PubMed ID: 24921549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-step implementation of a hybrid Fredkin gate with quantum memories and single superconducting qubit in circuit QED and its applications.
    Liu T; Guo BQ; Yu CS; Zhang WN
    Opt Express; 2018 Feb; 26(4):4498-4511. PubMed ID: 29475300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conversion of entangled states with nitrogen-vacancy centers coupled to microtoroidal resonators.
    Ji YQ; Shao XQ; Yi XX
    Opt Express; 2017 Jul; 25(14):15806-15817. PubMed ID: 28789093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum memory and non-demolition measurement of single phonon state with nitrogen-vacancy centers ensemble.
    Wang RX; Cai K; Yin ZQ; Long GL
    Opt Express; 2017 Nov; 25(24):30149-30161. PubMed ID: 29221048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast optical cooling of a nanomechanical cantilever by a dynamical Stark-shift gate.
    Yan L; Zhang JQ; Zhang S; Feng M
    Sci Rep; 2015 Oct; 5():14977. PubMed ID: 26455901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Achieving maximum entanglement between two nitrogen-vacancy centers coupling to a whispering-gallery-mode microresonator.
    Liu S; Li J; Yu R; Wu Y
    Opt Express; 2013 Feb; 21(3):3501-15. PubMed ID: 23481808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of qubit-oscillator entanglement in nanoelectromechanical systems.
    Schmidt TL; Børkje K; Bruder C; Trauzettel B
    Phys Rev Lett; 2010 Apr; 104(17):177205. PubMed ID: 20482137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparing and preserving the double quantum coherence in NV
    Moussa O; Hincks I; Cory DG
    J Magn Reson; 2014 Dec; 249():24-31. PubMed ID: 25462943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of Surface Functionalization on the Quantum Coherence of Nitrogen-Vacancy Centers in Nanodiamonds.
    Ryan RG; Stacey A; O'Donnell KM; Ohshima T; Johnson BC; Hollenberg LCL; Mulvaney P; Simpson DA
    ACS Appl Mater Interfaces; 2018 Apr; 10(15):13143-13149. PubMed ID: 29557161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparing Multipartite Entangled Spin Qubits via Pauli Spin Blockade.
    Bugu S; Ozaydin F; Ferrus T; Kodera T
    Sci Rep; 2020 Feb; 10(1):3481. PubMed ID: 32103078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orbital State Manipulation of a Diamond Nitrogen-Vacancy Center Using a Mechanical Resonator.
    Chen HY; MacQuarrie ER; Fuchs GD
    Phys Rev Lett; 2018 Apr; 120(16):167401. PubMed ID: 29756908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.