These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 29074855)

  • 1. Enhanced conversion efficiency in Si solar cells employing photoluminescent down-shifting CdSe/CdS core/shell quantum dots.
    Lopez-Delgado R; Zhou Y; Zazueta-Raynaud A; Zhao H; Pelayo JE; Vomiero A; Álvarez-Ramos ME; Rosei F; Ayon A
    Sci Rep; 2017 Oct; 7(1):14104. PubMed ID: 29074855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of core quantum-dot size on power-conversion-efficiency for silicon solar-cells implementing energy-down-shift using CdSe/ZnS core/shell quantum dots.
    Baek SW; Shim JH; Seung HM; Lee GS; Hong JP; Lee KS; Park JG
    Nanoscale; 2014 Nov; 6(21):12524-31. PubMed ID: 25177831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CdSe-CdS quantum dots co-sensitized ZnO hierarchical hybrids for solar cells with enhanced photo-electrical conversion efficiency.
    Yuan Z; Yin L
    Nanoscale; 2014 Nov; 6(21):13135-44. PubMed ID: 25251160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AgIn
    Kong M; Osvet A; Barabash A; Zhang K; Hu H; Elia J; Erban C; Yokosawa T; Spiecker E; Batentschuk M; Brabec CJ
    ACS Appl Mater Interfaces; 2023 Oct; ():. PubMed ID: 37906729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Down-Shifting and Anti-Reflection Effect of CsPbBr
    Cao Y; Wu D; Zhu P; Shan D; Zeng X; Xu J
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32316489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrawide Spectral Response of CIGS Solar Cells Integrated with Luminescent Down-Shifting Quantum Dots.
    Jeong HJ; Kim YC; Lee SK; Jeong Y; Song JW; Yun JH; Jang JH
    ACS Appl Mater Interfaces; 2017 Aug; 9(30):25404-25411. PubMed ID: 28695727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural evolution from the CdSSe alloy to the CdS/CdSe core/shell in Cd(S and Se) composite quantum dots and its impact on the performance of sensitized solar cells.
    Fang J; Lv W; Lei Y; Deng J; Zhang P; Huang W
    Dalton Trans; 2021 Oct; 50(41):14672-14683. PubMed ID: 34585707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Performance Core/Shell of ZnO/TiO
    Kim JM; Lee BS; Hwang SW
    Molecules; 2020 Aug; 25(17):. PubMed ID: 32878143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The energy-down-shift effect of Cd(0.5)Zn(0.5)S-ZnS core-shell quantum dots on power-conversion-efficiency enhancement in silicon solar cells.
    Baek SW; Shim JH; Park JG
    Phys Chem Chem Phys; 2014 Sep; 16(34):18205-10. PubMed ID: 25054543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced light absorption and charge recombination control in quantum dot sensitized solar cells using tin doped cadmium sulfide quantum dots.
    Muthalif MPA; Sunesh CD; Choe Y
    J Colloid Interface Sci; 2019 Jan; 534():291-300. PubMed ID: 30237116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporation of Mn
    Zhang C; Liu S; Liu X; Deng F; Xiong Y; Tsai FC
    R Soc Open Sci; 2018 Mar; 5(3):171712. PubMed ID: 29657776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct Correlation of Excitonics with Efficiency in a Core-Shell Quantum Dot Solar Cell.
    Dana J; Maiti S; Tripathi VS; Ghosh HN
    Chemistry; 2018 Feb; 24(10):2418-2425. PubMed ID: 29193394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Size Effect of TiO
    Li Z; Yu L
    Materials (Basel); 2019 May; 12(10):. PubMed ID: 31096555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological Synthesis of CdS/CdSe Core/Shell Nanoparticles and Its Application in Quantum Dot Sensitized Solar Cells.
    Órdenes-Aenishanslins N; Anziani-Ostuni G; Quezada CP; Espinoza-González R; Bravo D; Pérez-Donoso JM
    Front Microbiol; 2019; 10():1587. PubMed ID: 31354676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of annealing temperature on the interface and photovoltaic properties of CdS/CdSe quantum dots sensitized ZnO nanorods solar cells.
    Qiu X; Chen L; Gong H; Zhu M; Han J; Zi M; Yang X; Ji C; Cao B
    J Colloid Interface Sci; 2014 Sep; 430():200-6. PubMed ID: 24998074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A large-area luminescent downshifting layer containing an Eu
    Yang D; Liang H; Liu Y; Hou M; Kan L; Yang Y; Zang Z
    Dalton Trans; 2020 Apr; 49(15):4725-4731. PubMed ID: 32207480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved photovoltaic performance and stability of quantum dot sensitized solar cells using Mn-ZnSe shell structure with enhanced light absorption and recombination control.
    Gopi CV; Venkata-Haritha M; Kim SK; Kim HJ
    Nanoscale; 2015 Aug; 7(29):12552-63. PubMed ID: 26140442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recombination Suppression in PbS Quantum Dot Heterojunction Solar Cells by Energy-Level Alignment in the Quantum Dot Active Layers.
    Ding C; Zhang Y; Liu F; Nakazawa N; Huang Q; Hayase S; Ogomi Y; Toyoda T; Wang R; Shen Q
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26142-26152. PubMed ID: 28862833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the performance of quantum dot sensitized solar cells through CdNiS quantum dots with reduced recombination and enhanced electron lifetime.
    Gopi CV; Venkata-Haritha M; Seo H; Singh S; Kim SK; Shiratani M; Kim HJ
    Dalton Trans; 2016 May; 45(20):8447-57. PubMed ID: 27111597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.