BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 2907496)

  • 1. Post-transcriptional control in Escherichia coli: translation and degradation of the atp operon mRNA.
    McCarthy JE; Schauder B; Ziemke P
    Gene; 1988 Dec; 72(1-2):131-9. PubMed ID: 2907496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Translation of the first gene of the Escherichia coli unc operon. Selection of the start codon and control of initiation efficiency.
    Schneppe B; Deckers-Hebestreit G; McCarthy JE; Altendorf K
    J Biol Chem; 1991 Nov; 266(31):21090-8. PubMed ID: 1834655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determinants of translational initiation efficiency in the atp operon of Escherichia coli.
    McCarthy JE; Bokelmann C
    Mol Microbiol; 1988 Jul; 2(4):455-65. PubMed ID: 2902504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Independent and coupled translational initiation of atp genes in Escherichia coli: experiments using chromosomal and plasmid-borne lacZ fusions.
    Gerstel B; McCarthy JE
    Mol Microbiol; 1989 Jul; 3(7):851-9. PubMed ID: 2529415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Post-transcriptional control in the polycistronic operon environment: studies of the atp operon of Escherichia coli.
    McCarthy JE
    Mol Microbiol; 1990 Aug; 4(8):1233-40. PubMed ID: 2149159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ribosomal affinity and translational initiation in Escherichia coli. In vitro investigations using translational initiation regions of differing efficiencies from the atp operon.
    Lang V; Gualerzi C; McCarthy JE
    J Mol Biol; 1989 Dec; 210(3):659-63. PubMed ID: 2693739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential gene expression from the Escherichia coli atp operon mediated by segmental differences in mRNA stability.
    McCarthy JE; Gerstel B; Surin B; Wiedemann U; Ziemke P
    Mol Microbiol; 1991 Oct; 5(10):2447-58. PubMed ID: 1838784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The control of mRNA stability in Escherichia coli: manipulation of the degradation pathway of the polycistronic atp mRNA.
    Ziemke P; McCarthy JE
    Biochim Biophys Acta; 1992 Apr; 1130(3):297-306. PubMed ID: 1373327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The promoter-proximal, unstable IB region of the atp mRNA of Escherichia coli: an independently degraded region that can act as a destabilizing element.
    Schramm HC; Schneppe B; Birkenhäger R; McCarthy JE
    Biochim Biophys Acta; 1996 Jun; 1307(2):162-70. PubMed ID: 8679701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An upstream uncD sequence modulates translation of Escherichia coli uncC.
    Dunn SD; Dallmann HG
    J Bacteriol; 1990 May; 172(5):2782-4. PubMed ID: 2139652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of bases upstream of the Shine-Dalgarno region and in the coding sequence in the control of gene expression in Escherichia coli: translation and stability of mRNAs in vivo.
    Schauder B; McCarthy JE
    Gene; 1989 May; 78(1):59-72. PubMed ID: 2475391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Importance of mRNA folding and start codon accessibility in the expression of genes in a ribosomal protein operon of Escherichia coli.
    Wikström PM; Lind LK; Berg DE; Björk GR
    J Mol Biol; 1992 Apr; 224(4):949-66. PubMed ID: 1569581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Translational coupling varying in efficiency between different pairs of genes in the central region of the atp operon of Escherichia coli.
    Hellmuth K; Rex G; Surin B; Zinck R; McCarthy JE
    Mol Microbiol; 1991 Apr; 5(4):813-24. PubMed ID: 1830358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Translational initiation frequency of atp genes from Escherichia coli: identification of an intercistronic sequence that enhances translation.
    McCarthy JE; Schairer HU; Sebald W
    EMBO J; 1985 Feb; 4(2):519-26. PubMed ID: 2862030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of the unc genes in Escherichia coli.
    McCarthy JE
    J Bioenerg Biomembr; 1988 Feb; 20(1):19-39. PubMed ID: 2894371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Post-transcriptional regulation of the str operon in Escherichia coli. Structural and mutational analysis of the target site for translational repressor S7.
    Saito K; Nomura M
    J Mol Biol; 1994 Jan; 235(1):125-39. PubMed ID: 8289236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-transcriptional control of bacteriophage T4 gene 25 expression: mRNA secondary structure that enhances translational initiation.
    Nivinskas R; Malys N; Klausa V; Vaiskunaite R; Gineikiene E
    J Mol Biol; 1999 May; 288(3):291-304. PubMed ID: 10329143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation of Escherichia coli uncB mRNA by multiple endonucleolytic cleavages.
    Patel AM; Dunn SD
    J Bacteriol; 1995 Jul; 177(14):3917-22. PubMed ID: 7608061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of the Escherichia coli uncH gene by mRNA secondary structure and translational coupling.
    Pati S; DiSilvestre D; Brusilow WS
    Mol Microbiol; 1992 Dec; 6(23):3559-66. PubMed ID: 1282193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Limited differential mRNA inactivation in the atp (unc) operon of Escherichia coli.
    Lagoni OR; von Meyenburg K; Michelsen O
    J Bacteriol; 1993 Sep; 175(18):5791-7. PubMed ID: 7690747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.