These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
291 related articles for article (PubMed ID: 29075116)
1. Innovative biodegradable poly(L-lactide)/collagen/hydroxyapatite composite fibrous scaffolds promote osteoblastic proliferation and differentiation. Zhou G; Liu S; Ma Y; Xu W; Meng W; Lin X; Wang W; Wang S; Zhang J Int J Nanomedicine; 2017; 12():7577-7588. PubMed ID: 29075116 [TBL] [Abstract][Full Text] [Related]
2. Electrospun nanostructured scaffolds for bone tissue engineering. Prabhakaran MP; Venugopal J; Ramakrishna S Acta Biomater; 2009 Oct; 5(8):2884-93. PubMed ID: 19447211 [TBL] [Abstract][Full Text] [Related]
3. Stem cell differentiation on electrospun nanofibrous substrates for vascular tissue engineering. Jia L; Prabhakaran MP; Qin X; Ramakrishna S Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4640-50. PubMed ID: 24094171 [TBL] [Abstract][Full Text] [Related]
4. Poly-3-hydroxybutyrate-co-3-hydroxyvalerate containing scaffolds and their integration with osteoblasts as a model for bone tissue engineering. Zhang S; Prabhakaran MP; Qin X; Ramakrishna S J Biomater Appl; 2015 May; 29(10):1394-406. PubMed ID: 25592285 [TBL] [Abstract][Full Text] [Related]
5. Bioactivity assessment of PLLA/PCL/HAP electrospun nanofibrous scaffolds for bone tissue engineering. Qi H; Ye Z; Ren H; Chen N; Zeng Q; Wu X; Lu T Life Sci; 2016 Mar; 148():139-44. PubMed ID: 26874032 [TBL] [Abstract][Full Text] [Related]
7. Osteogenic differentiation of MC3T3-E1 cells on poly(L-lactide)/Fe3O4 nanofibers with static magnetic field exposure. Cai Q; Shi Y; Shan D; Jia W; Duan S; Deng X; Yang X Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():166-73. PubMed ID: 26117751 [TBL] [Abstract][Full Text] [Related]
8. Precipitation of nanohydroxyapatite on PLLA/PBLG/Collagen nanofibrous structures for the differentiation of adipose derived stem cells to osteogenic lineage. Ravichandran R; Venugopal JR; Sundarrajan S; Mukherjee S; Ramakrishna S Biomaterials; 2012 Jan; 33(3):846-55. PubMed ID: 22048006 [TBL] [Abstract][Full Text] [Related]
9. Effective combination of aligned nanocomposite nanofibers and human unrestricted somatic stem cells for bone tissue engineering. Bakhshandeh B; Soleimani M; Ghaemi N; Shabani I Acta Pharmacol Sin; 2011 May; 32(5):626-36. PubMed ID: 21516135 [TBL] [Abstract][Full Text] [Related]
10. Cell adhesive and growth behavior on electrospun nanofibrous scaffolds by designed multifunctional composites. Cao D; Wu YP; Fu ZF; Tian Y; Li CJ; Gao CY; Chen ZL; Feng XZ Colloids Surf B Biointerfaces; 2011 May; 84(1):26-34. PubMed ID: 21227659 [TBL] [Abstract][Full Text] [Related]
11. Hydroxyapatite-intertwined hybrid nanofibres for the mineralization of osteoblasts. Sujana A; Venugopal JR; Velmurugan B; Góra A; Salla M; Ramakrishna S J Tissue Eng Regen Med; 2017 Jun; 11(6):1853-1864. PubMed ID: 26354141 [TBL] [Abstract][Full Text] [Related]
12. Nanofibrous Scaffolds Containing Hydroxyapatite and Microfluidic-Prepared Polyamidoamin/BMP-2 Plasmid Dendriplexes for Bone Tissue Engineering Applications. Doosti-Telgerd M; Mahdavi FS; Moradikhah F; Porgham Daryasari M; Bayrami Atashgah R; Dolatyar B; Akbari Javar H; Seyedjafari E; Shabani I; Arefian E; Najafi F; Abdi Y; Amini M Int J Nanomedicine; 2020; 15():2633-2646. PubMed ID: 32368045 [TBL] [Abstract][Full Text] [Related]
13. Electrospun hydroxyapatite-containing chitosan nanofibers crosslinked with genipin for bone tissue engineering. Frohbergh ME; Katsman A; Botta GP; Lazarovici P; Schauer CL; Wegst UG; Lelkes PI Biomaterials; 2012 Dec; 33(36):9167-78. PubMed ID: 23022346 [TBL] [Abstract][Full Text] [Related]
14. Electrospun nanofibrous scaffolds of poly (L-lactic acid)-dicalcium silicate composite via ultrasonic-aging technique for bone regeneration. Dong S; Sun J; Li Y; Li J; Cui W; Li B Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():426-33. PubMed ID: 24411397 [TBL] [Abstract][Full Text] [Related]
15. Mineralized Polyamide66/Calcium Chloride Nanofibers for Bone Tissue Engineering. Niu X; Zhao L; Yin M; Huang D; Wang N; Wei Y; Hu Y; Lian X; Chen W Tissue Eng Part C Methods; 2020 Jul; 26(7):352-363. PubMed ID: 32458747 [TBL] [Abstract][Full Text] [Related]
16. Preparation, in vitro degradability, cytotoxicity, and in vivo biocompatibility of porous hydroxyapatite whisker-reinforced poly(L-lactide) biocomposite scaffolds. Xie L; Yu H; Yang W; Zhu Z; Yue L J Biomater Sci Polym Ed; 2016; 27(6):505-28. PubMed ID: 26873015 [TBL] [Abstract][Full Text] [Related]
17. Mineralization of osteoblasts with electrospun collagen/hydroxyapatite nanofibers. Venugopal J; Low S; Choon AT; Sampath Kumar TS; Ramakrishna S J Mater Sci Mater Med; 2008 May; 19(5):2039-46. PubMed ID: 17957448 [TBL] [Abstract][Full Text] [Related]
18. Highly porous PHB-based bioactive scaffolds for bone tissue engineering by in situ synthesis of hydroxyapatite. Degli Esposti M; Chiellini F; Bondioli F; Morselli D; Fabbri P Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():286-296. PubMed ID: 30948063 [TBL] [Abstract][Full Text] [Related]
19. Aligned bioactive multi-component nanofibrous nanocomposite scaffolds for bone tissue engineering. Jose MV; Thomas V; Xu Y; Bellis S; Nyairo E; Dean D Macromol Biosci; 2010 Apr; 10(4):433-44. PubMed ID: 20112236 [TBL] [Abstract][Full Text] [Related]
20. Effect of negatively charged cellulose nanofibers on the dispersion of hydroxyapatite nanoparticles for scaffolds in bone tissue engineering. Park M; Lee D; Shin S; Hyun J Colloids Surf B Biointerfaces; 2015 Jun; 130():222-8. PubMed ID: 25910635 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]