These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 29075281)

  • 61. Analysis of Glucosinolate Content and Metabolism Related Genes in Different Parts of Chinese Flowering Cabbage.
    Feng X; Ma J; Liu Z; Li X; Wu Y; Hou L; Li M
    Front Plant Sci; 2021; 12():767898. PubMed ID: 35111173
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Glucosinolate biosynthesis in hairy root cultures of broccoli (Brassica oleracea var. italica).
    Kim SJ; Park WT; Uddin MR; Kim YB; Nam SY; Jho KH; Park SU
    Nat Prod Commun; 2013 Feb; 8(2):217-20. PubMed ID: 23513733
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Evaluating the impact of sprouting conditions on the glucosinolate content of Brassica oleracea sprouts.
    Vale AP; Santos J; Brito NV; Fernandes D; Rosa E; Oliveira MB
    Phytochemistry; 2015 Jul; 115():252-60. PubMed ID: 25698361
    [TBL] [Abstract][Full Text] [Related]  

  • 64. First report of Leptosphaeria biglobosa 'canadensis' causing blackleg on oilseed rape (Brassica napus) in China.
    Luo T; Li G; Yang L
    Plant Dis; 2021 Mar; ():. PubMed ID: 33754864
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Metabolite Profiling and Comparative Analysis of Secondary Metabolites in Chinese Cabbage, Radish, and Hybrid
    Park CH; Park SY; Park YJ; Kim JK; Park SU
    J Agric Food Chem; 2020 Nov; 68(47):13711-13719. PubMed ID: 33190495
    [TBL] [Abstract][Full Text] [Related]  

  • 66. New nodes and edges in the glucosinolate molecular network revealed by proteomics and metabolomics of Arabidopsis myb28/29 and cyp79B2/B3 glucosinolate mutants.
    Mostafa I; Zhu N; Yoo MJ; Balmant KM; Misra BB; Dufresne C; Abou-Hashem M; Chen S; El-Domiaty M
    J Proteomics; 2016 Apr; 138():1-19. PubMed ID: 26915584
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Comparison of non-subjective relative fungal biomass measurements to quantify the Leptosphaeria maculans-Brassica napus interaction.
    Schnippenkoetter W; Hoque M; Maher R; Van de Wouw A; Hands P; Rolland V; Barrett L; Sprague S
    Plant Methods; 2021 Dec; 17(1):122. PubMed ID: 34852830
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Plant Glucosinolate Content and Host-Plant Preference and Suitability in the Small White Butterfly (Lepidoptera: Pieridae) and Comparison with Another Specialist Lepidopteran.
    Badenes-Pérez FR
    Plants (Basel); 2023 May; 12(11):. PubMed ID: 37299126
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Host Genetic Resistance in
    Sprague SJ; Van de Wouw AP; Marcroft SJ; Geffersa AG; Idnurm A; Barrett LG
    Plant Dis; 2024 Nov; 108(11):3319-3328. PubMed ID: 38956956
    [TBL] [Abstract][Full Text] [Related]  

  • 70.
    Padmathilake KRE; Fernando WGD
    Int J Mol Sci; 2022 Apr; 23(7):. PubMed ID: 35409323
    [No Abstract]   [Full Text] [Related]  

  • 71. First Report of Blackleg Disease Caused by Leptosphaeria maculans on Canola in Brazil.
    Fernando WGD; Parks PS; Tomm G; Viau LV; Jurke C
    Plant Dis; 2003 Mar; 87(3):314. PubMed ID: 30812772
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Targeted silencing of BjMYB28 transcription factor gene directs development of low glucosinolate lines in oilseed Brassica juncea.
    Augustine R; Mukhopadhyay A; Bisht NC
    Plant Biotechnol J; 2013 Sep; 11(7):855-66. PubMed ID: 23721233
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Multi-environment QTL studies suggest a role for cysteine-rich protein kinase genes in quantitative resistance to blackleg disease in Brassica napus.
    Larkan NJ; Raman H; Lydiate DJ; Robinson SJ; Yu F; Barbulescu DM; Raman R; Luckett DJ; Burton W; Wratten N; Salisbury PA; Rimmer SR; Borhan MH
    BMC Plant Biol; 2016 Aug; 16(1):183. PubMed ID: 27553246
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Large-Scale Surveys of Blackleg of Oilseed Rape (
    Deng Y; Li JC; Lyv X; Xu JW; Wu MD; Zhang J; Yang L; Li GQ
    Plant Dis; 2023 May; 107(5):1408-1417. PubMed ID: 36222724
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Prevalence of Blackleg and Pathogenicity Groups of Leptosphaeria maculans in North Dakota.
    Nepal A; Markell S; Knodel J; Bradley CA; Del Río Mendoza LE
    Plant Dis; 2014 Mar; 98(3):328-335. PubMed ID: 30708417
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Aromatic Glucosinolate Biosynthesis Pathway in Barbarea vulgaris and its Response to Plutella xylostella Infestation.
    Liu T; Zhang X; Yang H; Agerbirk N; Qiu Y; Wang H; Shen D; Song J; Li X
    Front Plant Sci; 2016; 7():83. PubMed ID: 26904055
    [TBL] [Abstract][Full Text] [Related]  

  • 77. RFLP mapping of resistance to the blackleg disease [causal agent, Leptosphaeria maculans (Desm.) Ces. et de Not.] in canola (Brassica napus L.).
    Dion Y; Gugel RK; Rakow GF; Séguin-Swartz G; Landry BS
    Theor Appl Genet; 1995 Dec; 91(8):1190-4. PubMed ID: 24170045
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Role of Major Glucosinolates in the Defense of Kale Against
    Madloo P; Lema M; Francisco M; Soengas P
    Phytopathology; 2019 Jul; 109(7):1246-1256. PubMed ID: 30920356
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Identification and expression pattern analysis of BoMYB51 involved in indolic glucosinolate biosynthesis from broccoli (Brassica oleracea var. italica).
    Yu Q; Hao G; Zhou J; Wang J; Evivie ER; Li J
    Biochem Biophys Res Commun; 2018 Jun; 501(2):598-604. PubMed ID: 29753738
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A New Subclade of
    Zou Z; Zhang X; Parks P; du Toit LJ; Van de Wouw AP; Fernando WGD
    Int J Mol Sci; 2019 Apr; 20(7):. PubMed ID: 30987176
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.