These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 29075428)

  • 1. Obtaining Natural Sit-to-Stand Motion with a Biomimetic Controller for Powered Knee Prostheses.
    Wu M; Haque MR; Shen X
    J Healthc Eng; 2017; 2017():3850351. PubMed ID: 29075428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can a powered knee-ankle prosthesis improve weight-bearing symmetry during stand-to-sit transitions in individuals with above-knee amputations?
    Hunt GR; Hood S; Gabert L; Lenzi T
    J Neuroeng Rehabil; 2023 May; 20(1):58. PubMed ID: 37131231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved Weight-Bearing Symmetry for Transfemoral Amputees During Standing Up and Sitting Down With a Powered Knee-Ankle Prosthesis.
    Simon AM; Fey NP; Ingraham KA; Finucane SB; Halsne EG; Hargrove LJ
    Arch Phys Med Rehabil; 2016 Jul; 97(7):1100-6. PubMed ID: 26686876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A powered prosthetic intervention for bilateral transfemoral amputees.
    Lawson BE; Ruhe B; Shultz A; Goldfarb M
    IEEE Trans Biomed Eng; 2015 Apr; 62(4):1042-50. PubMed ID: 25014950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions Between Transfemoral Amputees and a Powered Knee Prosthesis During Load Carriage.
    Brandt A; Wen Y; Liu M; Stallings J; Huang HH
    Sci Rep; 2017 Nov; 7(1):14480. PubMed ID: 29101394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive control of powered transfemoral prostheses based on adaptive dynamic programming.
    Yue Wen ; Ming Liu ; Si J; He Huang
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5071-5074. PubMed ID: 28269408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early evaluation of a powered transfemoral prosthesis with force-modulated impedance control and energy regeneration.
    Warner H; Khalaf P; Richter H; Simon D; Hardin E; van den Bogert AJ
    Med Eng Phys; 2022 Feb; 100():103744. PubMed ID: 35144731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Standing on slopes - how current microprocessor-controlled prosthetic feet support transtibial and transfemoral amputees in an everyday task.
    Ernst M; Altenburg B; Bellmann M; Schmalz T
    J Neuroeng Rehabil; 2017 Nov; 14(1):117. PubMed ID: 29145876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Increasing Assistance From a Powered Prosthesis on Weight-Bearing Symmetry, Effort, and Speed During Stand-Up in Individuals With Above-Knee Amputation.
    Hunt GR; Hood S; Gabert L; Lenzi T
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():11-21. PubMed ID: 36240032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of transfemoral amputees using a passive microprocessor-controlled knee versus an active powered microprocessor-controlled knee for level walking.
    Creylman V; Knippels I; Janssen P; Biesbrouck E; Lechler K; Peeraer L
    Biomed Eng Online; 2016 Dec; 15(Suppl 3):142. PubMed ID: 28105945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the Relative Contributions of Active Ankle and Knee Assistance to the Walking Mechanics of Transfemoral Amputees Using a Powered Prosthesis.
    Ingraham KA; Fey NP; Simon AM; Hargrove LJ
    PLoS One; 2016; 11(1):e0147661. PubMed ID: 26807889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Primarily-Passive Knee Prosthesis with Powered Stance and Swing Assistance.
    Culver SC; Vailati LG; Goldfarb M
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Standing stability enhancement with an intelligent powered transfemoral prosthesis.
    Lawson BE; Varol HA; Goldfarb M
    IEEE Trans Biomed Eng; 2011 Sep; 58(9):2617-24. PubMed ID: 21693411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ground adaptive standing controller for a powered transfemoral prosthesis.
    Lawson BE; Varol HA; Goldfarb M
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975475. PubMed ID: 22275673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A powered prosthetic ankle joint for walking and running.
    Grimmer M; Holgate M; Holgate R; Boehler A; Ward J; Hollander K; Sugar T; Seyfarth A
    Biomed Eng Online; 2016 Dec; 15(Suppl 3):141. PubMed ID: 28105953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical risk factors for knee osteoarthritis when using passive and powered ankle-foot prostheses.
    Russell Esposito E; Wilken JM
    Clin Biomech (Bristol, Avon); 2014 Dec; 29(10):1186-92. PubMed ID: 25440576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and energetic evaluation of a prosthetic knee joint actuator with a lockable parallel spring.
    Geeroms J; Flynn L; Jimenez-Fabian R; Vanderborght B; Lefeber D
    Bioinspir Biomim; 2017 Feb; 12(2):026002. PubMed ID: 28059775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic asymmetry in transfemoral amputees while performing sit to stand and stand to sit movements.
    Highsmith MJ; Kahle JT; Carey SL; Lura DJ; Dubey RV; Csavina KR; Quillen WS
    Gait Posture; 2011 May; 34(1):86-91. PubMed ID: 21524913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active lower limb prosthetics: a systematic review of design issues and solutions.
    Windrich M; Grimmer M; Christ O; Rinderknecht S; Beckerle P
    Biomed Eng Online; 2016 Dec; 15(Suppl 3):140. PubMed ID: 28105948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Running with a powered knee and ankle prosthesis.
    Shultz AH; Lawson BE; Goldfarb M
    IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):403-12. PubMed ID: 25020138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.