These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 29075429)

  • 1. A Feasibility Study of SSVEP-Based Passive Training on an Ankle Rehabilitation Robot.
    Zeng X; Zhu G; Yue L; Zhang M; Xie S
    J Healthc Eng; 2017; 2017():6819056. PubMed ID: 29075429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative Study of SSVEP- and P300-Based Models for the Telepresence Control of Humanoid Robots.
    Zhao J; Li W; Li M
    PLoS One; 2015; 10(11):e0142168. PubMed ID: 26562524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maximizing Information Transfer in SSVEP-Based Brain-Computer Interfaces.
    Sengelmann M; Engel AK; Maye A
    IEEE Trans Biomed Eng; 2017 Feb; 64(2):381-394. PubMed ID: 28113192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An online hybrid BCI system based on SSVEP and EMG.
    Lin K; Cinetto A; Wang Y; Chen X; Gao S; Gao X
    J Neural Eng; 2016 Apr; 13(2):026020. PubMed ID: 26902294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EEG-Controlled Wall-Crawling Cleaning Robot Using SSVEP-Based Brain-Computer Interface.
    Shao L; Zhang L; Belkacem AN; Zhang Y; Chen X; Li J; Liu H
    J Healthc Eng; 2020; 2020():6968713. PubMed ID: 32399166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eliciting dual-frequency SSVEP using a hybrid SSVEP-P300 BCI.
    Chang MH; Lee JS; Heo J; Park KS
    J Neurosci Methods; 2016 Jan; 258():104-13. PubMed ID: 26561770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of a 7-DOF Robotic Arm System With an SSVEP-Based BCI.
    Chen X; Zhao B; Wang Y; Xu S; Gao X
    Int J Neural Syst; 2018 Oct; 28(8):1850018. PubMed ID: 29768990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unsupervised frequency-recognition method of SSVEPs using a filter bank implementation of binary subband CCA.
    Rabiul Islam M; Khademul Islam Molla M; Nakanishi M; Tanaka T
    J Neural Eng; 2017 Apr; 14(2):026007. PubMed ID: 28071599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials.
    Li R; Zhang X; Li H; Zhang L; Lu Z; Chen J
    Brain Res; 2018 Aug; 1692():142-153. PubMed ID: 29777674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Dynamic Window Recognition Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Spatio-Temporal Equalizer.
    Yang C; Han X; Wang Y; Saab R; Gao S; Gao X
    Int J Neural Syst; 2018 Dec; 28(10):1850028. PubMed ID: 30105920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface.
    Chen X; Wang Y; Gao S; Jung TP; Gao X
    J Neural Eng; 2015 Aug; 12(4):046008. PubMed ID: 26035476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A high-speed brain speller using steady-state visual evoked potentials.
    Nakanishi M; Wang Y; Wang YT; Mitsukura Y; Jung TP
    Int J Neural Syst; 2014 Sep; 24(6):1450019. PubMed ID: 25081427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Online Brain-Computer Interface Based on SSVEPs Measured From Non-Hair-Bearing Areas.
    Wang YT; Nakanishi M; Wang Y; Wei CS; Cheng CK; Jung TP
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jan; 25(1):11-18. PubMed ID: 27254871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency recognition in an SSVEP-based brain computer interface using empirical mode decomposition and refined generalized zero-crossing.
    Wu CH; Chang HC; Lee PL; Li KS; Sie JJ; Sun CW; Yang CY; Li PH; Deng HT; Shyu KK
    J Neurosci Methods; 2011 Mar; 196(1):170-81. PubMed ID: 21194547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classification of binary intentions for individuals with impaired oculomotor function: 'eyes-closed' SSVEP-based brain-computer interface (BCI).
    Lim JH; Hwang HJ; Han CH; Jung KY; Im CH
    J Neural Eng; 2013 Apr; 10(2):026021. PubMed ID: 23528484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. State of the art in parallel ankle rehabilitation robot: a systematic review.
    Dong M; Zhou Y; Li J; Rong X; Fan W; Zhou X; Kong Y
    J Neuroeng Rehabil; 2021 Mar; 18(1):52. PubMed ID: 33743757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Idle-State Detection Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Maximum Evoked Response Spatial Filter.
    Zhang D; Huang B; Wu W; Li S
    Int J Neural Syst; 2015 Nov; 25(7):1550030. PubMed ID: 26246229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequence detection analysis based on canonical correlation for steady-state visual evoked potential brain computer interfaces.
    Cao L; Ju Z; Li J; Jian R; Jiang C
    J Neurosci Methods; 2015 Sep; 253():10-7. PubMed ID: 26014663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review on the mechanical design elements of ankle rehabilitation robot.
    Khalid YM; Gouwanda D; Parasuraman S
    Proc Inst Mech Eng H; 2015 Jun; 229(6):452-63. PubMed ID: 25979442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alpha neurofeedback training improves SSVEP-based BCI performance.
    Wan F; da Cruz JN; Nan W; Wong CM; Vai MI; Rosa A
    J Neural Eng; 2016 Jun; 13(3):036019. PubMed ID: 27152666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.