These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 29075429)

  • 21. Commanding a robotic wheelchair with a high-frequency steady-state visual evoked potential based brain-computer interface.
    Diez PF; Torres Müller SM; Mut VA; Laciar E; Avila E; Bastos-Filho TF; Sarcinelli-Filho M
    Med Eng Phys; 2013 Aug; 35(8):1155-64. PubMed ID: 23339894
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A multi-command SSVEP-based BCI system based on single flickering frequency half-field steady-state visual stimulation.
    Punsawad Y; Wongsawat Y
    Med Biol Eng Comput; 2017 Jun; 55(6):965-977. PubMed ID: 27651060
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Robot-Driven Computational Model for Estimating Passive Ankle Torque With Subject-Specific Adaptation.
    Zhang M; Meng W; Davies TC; Zhang Y; Xie SQ
    IEEE Trans Biomed Eng; 2016 Apr; 63(4):814-21. PubMed ID: 26340767
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ankle passive and active movement training in children with acute brain injury using a wearable robot.
    Chen K; Xiong B; Ren Y; Dvorkin AY; Gaebler-Spira D; Sisung CE; Zhang LQ
    J Rehabil Med; 2018 Jan; 50(1):30-36. PubMed ID: 29104998
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Independence of amplitude-frequency and phase calibrations in an SSVEP-based BCI using stepping delay flickering sequences.
    Chang HC; Lee PL; Lo MT; Lee IH; Yeh TK; Chang CY
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):305-12. PubMed ID: 22203724
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A new hybrid BCI paradigm based on P300 and SSVEP.
    Wang M; Daly I; Allison BZ; Jin J; Zhang Y; Chen L; Wang X
    J Neurosci Methods; 2015 Apr; 244():16-25. PubMed ID: 24997343
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A hybrid BCI speller paradigm combining P300 potential and the SSVEP blocking feature.
    Xu M; Qi H; Wan B; Yin T; Liu Z; Ming D
    J Neural Eng; 2013 Apr; 10(2):026001. PubMed ID: 23369924
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Novel Evaluation Index and Optimization Method for Ankle Rehabilitation Robots Based on Ankle-Foot Motion.
    Zhang J; Ma Z; Wei J; Yang S; Liu C; Guo S
    J Biomech Eng; 2023 May; 145(5):. PubMed ID: 36537826
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tele-rehabilitation using in-house wearable ankle rehabilitation robot.
    Jamwal PK; Hussain S; Mir-Nasiri N; Ghayesh MH; Xie SQ
    Assist Technol; 2018; 30(1):24-33. PubMed ID: 27658061
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adaptive asynchronous control system of robotic arm based on augmented reality-assisted brain-computer interface.
    Chen L; Chen P; Zhao S; Luo Z; Chen W; Pei Y; Zhao H; Jiang J; Xu M; Yan Y; Yin E
    J Neural Eng; 2021 Nov; 18(6):. PubMed ID: 34654000
    [No Abstract]   [Full Text] [Related]  

  • 31. Driving a Semiautonomous Mobile Robotic Car Controlled by an SSVEP-Based BCI.
    Stawicki P; Gembler F; Volosyak I
    Comput Intell Neurosci; 2016; 2016():4909685. PubMed ID: 27528864
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluate the Feasibility of Using Frontal SSVEP to Implement an SSVEP-Based BCI in Young, Elderly and ALS Groups.
    Hsu HT; Lee IH; Tsai HT; Chang HC; Shyu KK; Hsu CC; Chang HH; Yeh TK; Chang CY; Lee PL
    IEEE Trans Neural Syst Rehabil Eng; 2016 May; 24(5):603-15. PubMed ID: 26625417
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A MUSIC-based method for SSVEP signal processing.
    Chen K; Liu Q; Ai Q; Zhou Z; Xie SQ; Meng W
    Australas Phys Eng Sci Med; 2016 Mar; 39(1):71-84. PubMed ID: 26831487
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SSVEP recognition using common feature analysis in brain-computer interface.
    Zhang Y; Zhou G; Jin J; Wang X; Cichocki A
    J Neurosci Methods; 2015 Apr; 244():8-15. PubMed ID: 24727656
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Advancing the detection of steady-state visual evoked potentials in brain-computer interfaces.
    Abu-Alqumsan M; Peer A
    J Neural Eng; 2016 Jun; 13(3):036005. PubMed ID: 27064728
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reviewing Clinical Effectiveness of Active Training Strategies of Platform-Based Ankle Rehabilitation Robots.
    Zeng X; Zhu G; Zhang M; Xie SQ
    J Healthc Eng; 2018; 2018():2858294. PubMed ID: 29675142
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel stimulation method for multi-class SSVEP-BCI using intermodulation frequencies.
    Chen X; Wang Y; Zhang S; Gao S; Hu Y; Gao X
    J Neural Eng; 2017 Apr; 14(2):026013. PubMed ID: 28091397
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Frequency and phase mixed coding in SSVEP-based brain--computer interface.
    Jia C; Gao X; Hong B; Gao S
    IEEE Trans Biomed Eng; 2011 Jan; 58(1):200-6. PubMed ID: 20729160
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An amplitude-modulated visual stimulation for reducing eye fatigue in SSVEP-based brain-computer interfaces.
    Chang MH; Baek HJ; Lee SM; Park KS
    Clin Neurophysiol; 2014 Jul; 125(7):1380-91. PubMed ID: 24368034
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SSVEP-based brain-computer interfaces using FSK-modulated visual stimuli.
    Kimura Y; Tanaka T; Higashi H; Morikawa N
    IEEE Trans Biomed Eng; 2013 Oct; 60(10):2831-8. PubMed ID: 23739780
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.