These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 29075450)

  • 1. Multilevel landscape utilization of the Siberian flying squirrel: Scale effects on species habitat use.
    Remm J; Hanski IK; Tuominen S; Selonen V
    Ecol Evol; 2017 Oct; 7(20):8303-8315. PubMed ID: 29075450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Home-range use patterns and movements of the Siberian flying squirrel in urban forests: Effects of habitat composition and connectivity.
    Mäkeläinen S; de Knegt HJ; Ovaskainen O; Hanski IK
    Mov Ecol; 2016; 4():5. PubMed ID: 26893904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predation risk landscape modifies flying and red squirrel nest site occupancy independently of habitat amount.
    Turkia T; Korpimäki E; Villers A; Selonen V
    PLoS One; 2018; 13(3):e0194624. PubMed ID: 29596438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natal habitat-biased dispersal in the Siberian flying squirrel.
    Selonen V; Hanski IK; Desrochers A
    Proc Biol Sci; 2007 Aug; 274(1621):2063-8. PubMed ID: 17567559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Weather and biotic interactions as determinants of seasonal shifts in abundance measured through nest-box occupancy in the Siberian flying squirrel.
    Selonen V; Hongisto K; Hänninen M; Turkia T; Korpimäki E
    Sci Rep; 2020 Sep; 10(1):14465. PubMed ID: 32879335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of landscape structure and patch characteristics on the density of central populations of the eastern green lizard
    Prieto-Ramírez AM
    Ecol Evol; 2023 Aug; 13(8):e10419. PubMed ID: 37600491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A dynamic multi-scale occupancy model to estimate temporal dynamics and hierarchical habitat use for nomadic species.
    Green AW; Pavlacky DC; George TL
    Ecol Evol; 2019 Jan; 9(2):793-803. PubMed ID: 30766669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hair cortisol concentration in Siberian flying squirrels is unrelated to landscape and social factors.
    Santangeli A; Wistbacka R; Morosinotto C; Raulo A
    Naturwissenschaften; 2019 May; 106(5-6):29. PubMed ID: 31144037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Home Range Estimates and Habitat Use of Siberian Flying Squirrels in South Korea.
    Kim JU; Kim JS; Jeon JH; Lee WS
    Animals (Basel); 2020 Aug; 10(8):. PubMed ID: 32784486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Occupancy versus colonization-extinction models for projecting population trends at different spatial scales.
    Nordén J; Harrison PJ; Mair L; Siitonen J; Lundström A; Kindvall O; Snäll T
    Ecol Evol; 2020 Mar; 10(6):3079-3089. PubMed ID: 32211178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pulsed food resources, but not forest cover, determine lifetime reproductive success in a forest-dwelling rodent.
    Hoset KS; Villers A; Wistbacka R; Selonen V
    J Anim Ecol; 2017 Sep; 86(5):1235-1245. PubMed ID: 28636171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting patch occupancy in fragmented landscapes at the rangewide scale for an endangered species: an example of an American warbler.
    Collier BA; Groce JE; Morrison ML; Newnam JC; Campomizzi AJ; Farrell SL; Mathewson HA; Snelgrove RT; Carroll RJ; Wilkins RN
    Divers Distrib; 2012 Feb; 18(2):158-167. PubMed ID: 22408381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-scalar drivers of biodiversity: local management mediates wild bee community response to regional urbanization.
    Ballare KM; Neff JL; Ruppel R; Jha S
    Ecol Appl; 2019 Apr; 29(3):e01869. PubMed ID: 30892745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Connectivity, landscape structure, and plant diversity across agricultural landscapes: novel insight into effective ecological network planning.
    Liccari F; Boscutti F; Bacaro G; Sigura M
    J Environ Manage; 2022 Sep; 317():115358. PubMed ID: 35636109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Competitive exclusion within the predator community influences the distribution of a threatened prey species.
    Byholm P; Burgas D; Virtanen T; Valkama J
    Ecology; 2012 Aug; 93(8):1802-8. PubMed ID: 22928409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Population fluctuations and spatial synchrony in an arboreal rodent.
    Selonen V; Remm J; Hanski IK; Henttonen H; Huitu O; Jokinen M; Korpimäki E; Mäkelä A; Sulkava R; Wistbacka R
    Oecologia; 2019 Dec; 191(4):861-871. PubMed ID: 31667601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variation in regional and landscape effects on occupancy of temperate bats in the southeastern U.S.
    Neece BD; Loeb SC; Jachowski DS
    PLoS One; 2018; 13(11):e0206857. PubMed ID: 30408058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Independent effects of fragmentation on forest songbirds: an organism-based approach.
    Betts MG; Forbes GJ; Diamond AW; Taylor PD
    Ecol Appl; 2006 Jun; 16(3):1076-89. PubMed ID: 16827004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Landscape experiments unlock relationships among habitat loss, fragmentation, and patch-size effects.
    Fletcher RJ; Smith TAH; Kortessis N; Bruna EM; Holt RD
    Ecology; 2023 May; 104(5):e4037. PubMed ID: 36942593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Population turnover and habitat dynamics in Notonecta (Hemiptera: Notonectidae) metapopulations.
    Briers RA; Warren PH
    Oecologia; 2000 May; 123(2):216-222. PubMed ID: 28308726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.