These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 29075669)

  • 1. Biosensing near the neutrality point of graphene.
    Fu W; Feng L; Panaitov G; Kireev D; Mayer D; Offenhäusser A; Krause HJ
    Sci Adv; 2017 Oct; 3(10):e1701247. PubMed ID: 29075669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoelectronic Heterodyne Sensor: A New Electronic Sensing Paradigm.
    Kulkarni GS; Zang W; Zhong Z
    Acc Chem Res; 2016 Nov; 49(11):2578-2586. PubMed ID: 27668314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum and electrochemical interplays in hydrogenated graphene.
    Jiang L; Fu W; Birdja YY; Koper MTM; Schneider GF
    Nat Commun; 2018 Feb; 9(1):793. PubMed ID: 29476098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three dimensional graphene transistor for ultra-sensitive pH sensing directly in biological media.
    Ameri SK; Singh PK; Sonkusale SR
    Anal Chim Acta; 2016 Aug; 934():212-7. PubMed ID: 27506362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene transistors with multifunctional polymer brushes for biosensing applications.
    Hess LH; Lyuleeva A; Blaschke BM; Sachsenhauser M; Seifert M; Garrido JA; Deubel F
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9705-10. PubMed ID: 24866105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward practical gas sensing with highly reduced graphene oxide: a new signal processing method to circumvent run-to-run and device-to-device variations.
    Lu G; Park S; Yu K; Ruoff RS; Ocola LE; Rosenmann D; Chen J
    ACS Nano; 2011 Feb; 5(2):1154-64. PubMed ID: 21204575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scalable graphene field-effect sensors for specific protein detection.
    Saltzgaber G; Wojcik P; Sharf T; Leyden MR; Wardini JL; Heist CA; Adenuga AA; Remcho VT; Minot ED
    Nanotechnology; 2013 Sep; 24(35):355502. PubMed ID: 23917462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra-sensitive suspended graphene nanocomposite cancer sensors with strong suppression of electrical noise.
    Zhang B; Li Q; Cui T
    Biosens Bioelectron; 2012 Jan; 31(1):105-9. PubMed ID: 22051545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution-gated graphene transistors for chemical and biological sensors.
    Yan F; Zhang M; Li J
    Adv Healthc Mater; 2014 Mar; 3(3):313-31. PubMed ID: 23950074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-Scale Graphene on Hexagonal-BN Hall Elements: Prediction of Sensor Performance without Magnetic Field.
    Joo MK; Kim J; Park JH; Nguyen VL; Kim KK; Lee YH; Suh D
    ACS Nano; 2016 Sep; 10(9):8803-11. PubMed ID: 27580305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene field effect transistor scaling for ultra-low-noise sensors.
    Tran NAM; Fakih I; Durnan O; Hu A; Aygar AM; Napal I; Centeno A; Zurutuza A; Reulet B; Szkopek T
    Nanotechnology; 2021 Jan; 32(4):045502. PubMed ID: 33049728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzyme-polyelectrolyte multilayer assemblies on reduced graphene oxide field-effect transistors for biosensing applications.
    Piccinini E; Bliem C; Reiner-Rozman C; Battaglini F; Azzaroni O; Knoll W
    Biosens Bioelectron; 2017 Jun; 92():661-667. PubMed ID: 27836616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensing at the Surface of Graphene Field-Effect Transistors.
    Fu W; Jiang L; van Geest EP; Lima LM; Schneider GF
    Adv Mater; 2017 Feb; 29(6):. PubMed ID: 27896865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical and biological sensing applications based on graphene field-effect transistors.
    Ohno Y; Maehashi K; Matsumoto K
    Biosens Bioelectron; 2010 Dec; 26(4):1727-30. PubMed ID: 20800470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene field-effect transistor and its application for electronic sensing.
    Zhan B; Li C; Yang J; Jenkins G; Huang W; Dong X
    Small; 2014 Oct; 10(20):4042-65. PubMed ID: 25044546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Performance Sensors Based on Resistance Fluctuations of Single-Layer-Graphene Transistors.
    Amin KR; Bid A
    ACS Appl Mater Interfaces; 2015 Sep; 7(35):19825-30. PubMed ID: 26301696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible glucose sensor using CVD-grown graphene-based field effect transistor.
    Kwak YH; Choi DS; Kim YN; Kim H; Yoon DH; Ahn SS; Yang JW; Yang WS; Seo S
    Biosens Bioelectron; 2012; 37(1):82-7. PubMed ID: 22609556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophoretic and field-effect graphene for all-electrical DNA array technology.
    Xu G; Abbott J; Qin L; Yeung KY; Song Y; Yoon H; Kong J; Ham D
    Nat Commun; 2014 Sep; 5():4866. PubMed ID: 25189574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of DNA with graphene and sensing applications of graphene field-effect transistor devices: a review.
    Green NS; Norton ML
    Anal Chim Acta; 2015 Jan; 853():127-142. PubMed ID: 25467454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transparent, flexible, all-reduced graphene oxide thin film transistors.
    He Q; Wu S; Gao S; Cao X; Yin Z; Li H; Chen P; Zhang H
    ACS Nano; 2011 Jun; 5(6):5038-44. PubMed ID: 21524119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.