These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 29075833)

  • 1. Transcriptome Profiling of Neurosensory Perception Genes in Wing Tissue of Two Evolutionary Distant Insect Orders: Diptera (Drosophila melanogaster) and Hemiptera (Acyrthosiphon pisum).
    Agnel S; da Rocha M; Robichon A
    J Mol Evol; 2017 Dec; 85(5-6):234-245. PubMed ID: 29075833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wing development genes of the pea aphid and differential gene expression between winged and unwinged morphs.
    Brisson JA; Ishikawa A; Miura T
    Insect Mol Biol; 2010 Mar; 19 Suppl 2():63-73. PubMed ID: 20482640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and expression profiling of odorant binding proteins and chemosensory proteins between two wingless morphs and a winged morph of the cotton aphid Aphis gossypii glover.
    Gu SH; Wu KM; Guo YY; Field LM; Pickett JA; Zhang YJ; Zhou JJ
    PLoS One; 2013; 8(9):e73524. PubMed ID: 24073197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The molecular correlates of organ loss: the case of insect Malpighian tubules.
    Jing X; White TA; Yang X; Douglas AE
    Biol Lett; 2015 May; 11(5):20150154. PubMed ID: 25972400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic variation for an aphid wing polyphenism is genetically linked to a naturally occurring wing polymorphism.
    Braendle C; Friebe I; Caillaud MC; Stern DL
    Proc Biol Sci; 2005 Mar; 272(1563):657-64. PubMed ID: 15817441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional Gustatory Role of Chemoreceptors in Drosophila Wings.
    Raad H; Ferveur JF; Ledger N; Capovilla M; Robichon A
    Cell Rep; 2016 May; 15(7):1442-1454. PubMed ID: 27160896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A dual-genome microarray for the pea aphid, Acyrthosiphon pisum, and its obligate bacterial symbiont, Buchnera aphidicola.
    Wilson AC; Dunbar HE; Davis GK; Hunter WB; Stern DL; Moran NA
    BMC Genomics; 2006 Mar; 7():50. PubMed ID: 16536873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. miR-92a-1-p5 Modulated Expression of the flightin Gene Regulates Flight Muscle Formation and Wing Extension in the Pea Aphid, Acyrthosiphon pisum (Hemiptera: Aphidoidea).
    Chang M; Cheng H; Cai Z; Qian Y; Zhang K; Yang L; Ma N; Li D
    J Insect Sci; 2022 May; 22(3):. PubMed ID: 35738260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential expression of genes in the alate and apterous morphs of the brown citrus aphid, Toxoptera citricida.
    Shang F; Ding BY; Xiong Y; Dou W; Wei D; Jiang HB; Wei DD; Wang JJ
    Sci Rep; 2016 Aug; 6():32099. PubMed ID: 27577531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nano-architecture of gustatory chemosensory bristles and trachea in Drosophila wings.
    Valmalette JC; Raad H; Qiu N; Ohara S; Capovilla M; Robichon A
    Sci Rep; 2015 Sep; 5():14198. PubMed ID: 26381332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ecdysone signaling underlies the pea aphid transgenerational wing polyphenism.
    Vellichirammal NN; Gupta P; Hall TA; Brisson JA
    Proc Natl Acad Sci U S A; 2017 Feb; 114(6):1419-1423. PubMed ID: 28115695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Canonical terminal patterning is an evolutionary novelty.
    Duncan EJ; Benton MA; Dearden PK
    Dev Biol; 2013 May; 377(1):245-61. PubMed ID: 23438815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The miR-9b microRNA mediates dimorphism and development of wing in aphids.
    Shang F; Niu J; Ding BY; Zhang W; Wei DD; Wei D; Jiang HB; Wang JJ
    Proc Natl Acad Sci U S A; 2020 Apr; 117(15):8404-8409. PubMed ID: 32217736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-scale gene discovery in the pea aphid Acyrthosiphon pisum (Hemiptera).
    Sabater-Muñoz B; Legeai F; Rispe C; Bonhomme J; Dearden P; Dossat C; Duclert A; Gauthier JP; Ducray DG; Hunter W; Dang P; Kambhampati S; Martinez-Torres D; Cortes T; Moya A; Nakabachi A; Philippe C; Prunier-Leterme N; Rahbé Y; Simon JC; Stern DL; Wincker P; Tagu D
    Genome Biol; 2006; 7(3):R21. PubMed ID: 16542494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of the insect body plan as revealed by the Sex combs reduced expression pattern.
    Rogers BT; Peterson MD; Kaufman TC
    Development; 1997 Jan; 124(1):149-57. PubMed ID: 9006076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome analysis of sexually dimorphic Chinese white wax scale insects reveals key differences in developmental programs and transcription factor expression.
    Yang P; Chen XM; Liu WW; Feng Y; Sun T
    Sci Rep; 2015 Jan; 5():8141. PubMed ID: 25634031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative Gene Mapping as a Tool to Understand the Evolution of Pest Crop Insect Chromosomes.
    Mandrioli M; Zambonini G; Manicardi GC
    Int J Mol Sci; 2017 Sep; 18(9):. PubMed ID: 28880213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and Characterization of Neuropeptides and Their G Protein-Coupled Receptors (GPCRs) in the Cowpea Aphid
    Li X; Du L; Jiang XJ; Ju Q; Qu CJ; Qu MJ; Liu TX
    Front Endocrinol (Lausanne); 2020; 11():640. PubMed ID: 33042012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the Distal-less gene homologue, NlDll, in the brown planthopper, Nilaparvata lugens (Stål).
    Lin X; Yao Y; Jin M; Li Q
    Gene; 2014 Feb; 535(2):112-8. PubMed ID: 24321689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origin and diversification of wings: Insights from a neopteran insect.
    Medved V; Marden JH; Fescemyer HW; Der JP; Liu J; Mahfooz N; Popadić A
    Proc Natl Acad Sci U S A; 2015 Dec; 112(52):15946-51. PubMed ID: 26668365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.