These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 29075852)

  • 1. Responses of medullary lateral line units of the rudd, Scardinius erythrophthalmus, and the nase, Chondrostoma nasus, to vortex streets.
    Winkelnkemper J; Kranz S; Bleckmann H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2018 Feb; 204(2):155-166. PubMed ID: 29075852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Medullary lateral line units of rudd, Scardinius erythrophthalmus, are sensitive to Kármán vortex streets.
    Klein A; Winkelnkemper J; Dylda E; Bleckmann H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2015 Jul; 201(7):691-703. PubMed ID: 26018072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kármán vortex street detection by the lateral line.
    Chagnaud BP; Bleckmann H; Hofmann MH
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Jul; 193(7):753-63. PubMed ID: 17503054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model of the lateral line of fish for vortex sensing.
    Ren Z; Mohseni K
    Bioinspir Biomim; 2012 Sep; 7(3):036016. PubMed ID: 22585366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of the lateral line and vision on body kinematics and hydrodynamic preference of rainbow trout in turbulent flow.
    Liao JC
    J Exp Biol; 2006 Oct; 209(Pt 20):4077-90. PubMed ID: 17023602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fish perspective: detecting flow features while moving using an artificial lateral line in steady and unsteady flow.
    Chambers LD; Akanyeti O; Venturelli R; Ježov J; Brown J; Kruusmaa M; Fiorini P; Megill WM
    J R Soc Interface; 2014 Oct; 11(99):. PubMed ID: 25079867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. What information do Kármán streets offer to flow sensing?
    Akanyeti O; Venturelli R; Visentin F; Chambers L; Megill WM; Fiorini P
    Bioinspir Biomim; 2011 Sep; 6(3):036001. PubMed ID: 21670492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model-based observer and feedback control design for a rigid Joukowski foil in a Kármán vortex street.
    Free BA; Paley DA
    Bioinspir Biomim; 2018 Mar; 13(3):035001. PubMed ID: 29355109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial lateral line based local sensing between two adjacent robotic fish.
    Zheng X; Wang C; Fan R; Xie G
    Bioinspir Biomim; 2017 Nov; 13(1):016002. PubMed ID: 28949301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of object position, vortex shedding frequency and flow velocity using artificial lateral line canals.
    Klein A; Bleckmann H
    Beilstein J Nanotechnol; 2011; 2():276-83. PubMed ID: 21977440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuromuscular control of trout swimming in a vortex street: implications for energy economy during the Karman gait.
    Liao JC
    J Exp Biol; 2004 Sep; 207(Pt 20):3495-506. PubMed ID: 15339945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of flow speed and body size on Kármán gait kinematics in rainbow trout.
    Akanyeti O; Liao JC
    J Exp Biol; 2013 Sep; 216(Pt 18):3442-9. PubMed ID: 23737556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wake tracking and the detection of vortex rings by the canal lateral line of fish.
    Franosch JM; Hagedorn HJ; Goulet J; Engelmann J; van Hemmen JL
    Phys Rev Lett; 2009 Aug; 103(7):078102. PubMed ID: 19792690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Kármán gait: novel body kinematics of rainbow trout swimming in a vortex street.
    Liao JC; Beal DN; Lauder GV; Triantafyllou MS
    J Exp Biol; 2003 Mar; 206(Pt 6):1059-73. PubMed ID: 12582148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epidemiology of squamous cell carcinomas in rudd Scardinius erythrophthalmus from SE Ireland.
    Hanajavanit C; Bermingham M; Mulcahy MF
    Dis Aquat Organ; 2008 Jul; 80(2):145-56. PubMed ID: 18717067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrodynamic pressure sensing with an artificial lateral line in steady and unsteady flows.
    Venturelli R; Akanyeti O; Visentin F; Ježov J; Chambers LD; Toming G; Brown J; Kruusmaa M; Megill WM; Fiorini P
    Bioinspir Biomim; 2012 Sep; 7(3):036004. PubMed ID: 22498729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Head width influences flow sensing by the lateral line canal system in fishes.
    Yanagitsuru YR; Akanyeti O; Liao JC
    J Exp Biol; 2018 Oct; 221(Pt 21):. PubMed ID: 30194249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hawkmoth flight stability in turbulent vortex streets.
    Ortega-Jimenez VM; Greeter JS; Mittal R; Hedrick TL
    J Exp Biol; 2013 Dec; 216(Pt 24):4567-79. PubMed ID: 24072794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fine structural review on the spermatozoa of Cyprinidae with attention to their phylogenetic implications.
    Fürböck S; Lahnsteiner F; Patzner RA
    Histol Histopathol; 2009 Oct; 24(10):1233-44. PubMed ID: 19688692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beyond the Kármán gait: knifefish swimming in periodic and irregular vortex streets.
    Ortega-Jiménez VM; Sanford CP
    J Exp Biol; 2021 May; 224(10):. PubMed ID: 33795417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.