These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 29076022)
1. The impact of cerium oxide nanoparticles on the physiology of soybean (Glycine max (L.) Merr.) under different soil moisture conditions. Cao Z; Rossi L; Stowers C; Zhang W; Lombardini L; Ma X Environ Sci Pollut Res Int; 2018 Jan; 25(1):930-939. PubMed ID: 29076022 [TBL] [Abstract][Full Text] [Related]
2. Impact of nanoparticle surface charge and phosphate on the uptake of coexisting cerium oxide nanoparticles and cadmium by soybean ( Sharifan H; Wang X; Ma X Int J Phytoremediation; 2020; 22(3):305-312. PubMed ID: 31468994 [TBL] [Abstract][Full Text] [Related]
3. Cerium oxide nanoparticles alter the salt stress tolerance of Brassica napus L. by modifying the formation of root apoplastic barriers. Rossi L; Zhang W; Ma X Environ Pollut; 2017 Oct; 229():132-138. PubMed ID: 28582676 [TBL] [Abstract][Full Text] [Related]
4. Attachment of cerium oxide nanoparticles of different surface charges to kaolinite: Molecular and atomic mechanisms. Guo B; Jiang J; Serem W; Sharma VK; Ma X Environ Res; 2019 Oct; 177():108645. PubMed ID: 31421447 [TBL] [Abstract][Full Text] [Related]
5. Biochar-assisted transformation of engineered-cerium oxide nanoparticles: Effect on wheat growth, photosynthetic traits and cerium accumulation. Abbas Q; Liu G; Yousaf B; Ali MU; Ullah H; Mujtaba Munir MA; Ahmed R; Rehman A Ecotoxicol Environ Saf; 2020 Jan; 187():109845. PubMed ID: 31654865 [TBL] [Abstract][Full Text] [Related]
6. Using artificial neural network to investigate physiological changes and cerium oxide nanoparticles and cadmium uptake by Brassica napus plants. Rossi L; Bagheri M; Zhang W; Chen Z; Burken JG; Ma X Environ Pollut; 2019 Mar; 246():381-389. PubMed ID: 30577006 [TBL] [Abstract][Full Text] [Related]
7. Cerium Oxide Nanoparticles and Bulk Cerium Oxide Leading to Different Physiological and Biochemical Responses in Brassica rapa. Ma X; Wang Q; Rossi L; Zhang W Environ Sci Technol; 2016 Jul; 50(13):6793-802. PubMed ID: 26691446 [TBL] [Abstract][Full Text] [Related]
8. Growth and Photosynthetic Inhibition of Cerium Oxide Nanoparticles on Soybean (Glycine max). Li J; Mu Q; Du Y; Luo J; Liu Y; Li T Bull Environ Contam Toxicol; 2020 Jul; 105(1):119-126. PubMed ID: 32468075 [TBL] [Abstract][Full Text] [Related]
9. Coating with polysaccharides influences the surface charge of cerium oxide nanoparticles and their effects to Mytilus galloprovincialis. Nigro L; Freitas R; Maggioni D; Hamza H; Coppola F; Protano G; Della Torre C NanoImpact; 2021 Oct; 24():100362. PubMed ID: 35559821 [TBL] [Abstract][Full Text] [Related]
10. Zinc oxide nanoparticles delay soybean development: a standard soil microcosm study. Yoon SJ; Kwak JI; Lee WM; Holden PA; An YJ Ecotoxicol Environ Saf; 2014 Feb; 100():131-7. PubMed ID: 24296285 [TBL] [Abstract][Full Text] [Related]
11. Alginate coating modifies the biological effects of cerium oxide nanoparticles to the freshwater bivalve Dreissena polymorpha. Della Torre C; Maggioni D; Nigro L; Farè F; Hamza H; Protano G; Magni S; Fontana M; Riccardi N; Chiara M; Caruso D; Binelli A Sci Total Environ; 2021 Jun; 773():145612. PubMed ID: 33582348 [TBL] [Abstract][Full Text] [Related]
12. Effects of Cr Li J; Song Y; Wu K; Tao Q; Liang Y; Li T Environ Sci Pollut Res Int; 2018 Jul; 25(20):19446-19457. PubMed ID: 29728974 [TBL] [Abstract][Full Text] [Related]
13. Damage assessment for soybean cultivated in soil with either CeO Priester JH; Moritz SC; Espinosa K; Ge Y; Wang Y; Nisbet RM; Schimel JP; Susana Goggi A; Gardea-Torresdey JL; Holden PA Sci Total Environ; 2017 Feb; 579():1756-1768. PubMed ID: 27939199 [TBL] [Abstract][Full Text] [Related]
14. Recent insights into the impact, fate and transport of cerium oxide nanoparticles in the plant-soil continuum. Prakash V; Peralta-Videa J; Tripathi DK; Ma X; Sharma S Ecotoxicol Environ Saf; 2021 Sep; 221():112403. PubMed ID: 34147863 [TBL] [Abstract][Full Text] [Related]
15. Natural molecule coatings modify the fate of cerium dioxide nanoparticles in water and their ecotoxicity to Daphnia magna. Villa S; Maggioni D; Hamza H; Di Nica V; Magni S; Morosetti B; Parenti CC; Finizio A; Binelli A; Della Torre C Environ Pollut; 2020 Feb; 257():113597. PubMed ID: 31744685 [TBL] [Abstract][Full Text] [Related]
16. Impact of Nanoparticle Surface Properties on the Attachment of Cerium Oxide Nanoparticles to Sand and Kaolin. Zhang W; Schwab AP; White JC; Ma X J Environ Qual; 2018 Jan; 47(1):129-138. PubMed ID: 29415104 [TBL] [Abstract][Full Text] [Related]
17. Environmental Stresses Increase Photosynthetic Disruption by Metal Oxide Nanomaterials in a Soil-Grown Plant. Conway JR; Beaulieu AL; Beaulieu NL; Mazer SJ; Keller AA ACS Nano; 2015 Dec; 9(12):11737-49. PubMed ID: 26505090 [TBL] [Abstract][Full Text] [Related]
18. Characterization and ecological risk assessment of nanoparticulate CeO2 as a diesel fuel catalyst. Batley GE; Halliburton B; Kirby JK; Doolette CL; Navarro D; McLaughlin MJ; Veitch C Environ Toxicol Chem; 2013 Aug; 32(8):1896-905. PubMed ID: 23595783 [TBL] [Abstract][Full Text] [Related]
19. Cerium oxide nanoparticles could ameliorate behavioral and neurochemical impairments in 6-hydroxydopamine induced Parkinson's disease in rats. Hegazy MA; Maklad HM; Samy DM; Abdelmonsif DA; El Sabaa BM; Elnozahy FY Neurochem Int; 2017 Sep; 108():361-371. PubMed ID: 28527632 [TBL] [Abstract][Full Text] [Related]
20. Toxicity of cerium oxide nanoparticles on neonatal testicular development in mouse organ culture. Lee WY; Park HJ Reprod Toxicol; 2022 Aug; 111():120-128. PubMed ID: 35644330 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]