BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 29076085)

  • 1. Stress Erythropoiesis Model Systems.
    Bennett LF; Liao C; Paulson RF
    Methods Mol Biol; 2018; 1698():91-102. PubMed ID: 29076085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro culture of stress erythroid progenitors identifies distinct progenitor populations and analogous human progenitors.
    Xiang J; Wu DC; Chen Y; Paulson RF
    Blood; 2015 Mar; 125(11):1803-12. PubMed ID: 25608563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of human recombinant erythropoietin on differentiation and distribution of erythroid progenitor cells on murine medullary and splenic erythropoiesis during hypoxia and post-hypoxia.
    Mide SM; Huygens P; Bozzini CE; Fernandez Pol JA
    In Vivo; 2001; 15(2):125-32. PubMed ID: 11317516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rats provide a superior model of human stress erythropoiesis.
    Zhang J; Liu Y; Han X; Mei Y; Yang J; Zhang ZJ; Lu X; Ji P
    Exp Hematol; 2019 Oct; 78():21-34.e3. PubMed ID: 31562902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PPAR-α and glucocorticoid receptor synergize to promote erythroid progenitor self-renewal.
    Lee HY; Gao X; Barrasa MI; Li H; Elmes RR; Peters LL; Lodish HF
    Nature; 2015 Jun; 522(7557):474-7. PubMed ID: 25970251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Murine erythroid short-term radioprotection requires a BMP4-dependent, self-renewing population of stress erythroid progenitors.
    Harandi OF; Hedge S; Wu DC; McKeone D; Paulson RF
    J Clin Invest; 2010 Dec; 120(12):4507-19. PubMed ID: 21060151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of anemia and hypertransfusion on neonatal marrow and splenic erythrocytic colony-forming units in vitro.
    Carmichael RD; Orlic D; Lutton JD; Gordon AS
    Stem Cells (1981); 1982; 1(3):165-79. PubMed ID: 7178998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inflammation induces stress erythropoiesis through heme-dependent activation of SPI-C.
    Bennett LF; Liao C; Quickel MD; Yeoh BS; Vijay-Kumar M; Hankey-Giblin P; Prabhu KS; Paulson RF
    Sci Signal; 2019 Sep; 12(598):. PubMed ID: 31506384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of regulation of erythropoiesis during hemolytic anemia.
    Zyuz'kov GN; Abramova EV; Dygai AM; Gol'dberg ED
    Bull Exp Biol Med; 2004 Oct; 138(4):334-7. PubMed ID: 15665937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Splenic plaque-forming cells (PFC) and stem cells (CFU-s) during acute phenylhydrazine-induced enhanced erythropoiesis.
    Kozlov VA; Zhuravkin IN; Coleman RM; Rencricca NJ
    J Exp Zool; 1980 Aug; 213(2):199-203. PubMed ID: 7007567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hematopoietic Stem Cells but Not Multipotent Progenitors Drive Erythropoiesis during Chronic Erythroid Stress in EPO Transgenic Mice.
    Singh RP; Grinenko T; Ramasz B; Franke K; Lesche M; Dahl A; Gassmann M; Chavakis T; Henry I; Wielockx B
    Stem Cell Reports; 2018 Jun; 10(6):1908-1919. PubMed ID: 29754961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stem cell migration induced by erythropoietin or haemolytic anaemia: the effects of actinomycin and endotoxin contamination of erythropoietin preparations.
    Quesenberry P; Levin J; Zuckerman K; Rencricca N; Sullivan R; Tyler W
    Br J Haematol; 1979 Feb; 41(2):253-69. PubMed ID: 85457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and characterization of a bipotent (erythroid and megakaryocytic) cell precursor from the spleen of phenylhydrazine-treated mice.
    Vannucchi AM; Paoletti F; Linari S; Cellai C; Caporale R; Ferrini PR; Sanchez M; Migliaccio G; Migliaccio AR
    Blood; 2000 Apr; 95(8):2559-68. PubMed ID: 10753835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alterations in the levels of stem cells (CFU-s) and plaque-forming cells (PFC) in mice during chronic phenylhydrazine-induced hemolytic anemia.
    Kozlov VA; Zhuravkin IN; Coleman RM; Rencricca NJ
    J Exp Zool; 1980; 211(3):357-60. PubMed ID: 7400762
    [No Abstract]   [Full Text] [Related]  

  • 15. Podocalyxin selectively marks erythroid-committed progenitors during anemic stress but is dispensable for efficient recovery.
    Maltby S; Hughes MR; Zbytnuik L; Paulson RF; McNagny KM
    Exp Hematol; 2009 Jan; 37(1):10-8. PubMed ID: 19004540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stress erythropoiesis in atherogenic mice.
    Sánchez Á; Orizaola MC; Rodríguez-Muñoz D; Aranda A; Castrillo A; Alemany S
    Sci Rep; 2020 Oct; 10(1):18469. PubMed ID: 33116141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential amplification of murine bipotent megakaryocytic/erythroid progenitor and precursor cells during recovery from acute and chronic erythroid stress.
    Sanchez M; Weissman IL; Pallavicini M; Valeri M; Guglielmelli P; Vannucchi AM; Migliaccio G; Migliaccio AR
    Stem Cells; 2006 Feb; 24(2):337-48. PubMed ID: 16144876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gdf15 regulates murine stress erythroid progenitor proliferation and the development of the stress erythropoiesis niche.
    Hao S; Xiang J; Wu DC; Fraser JW; Ruan B; Cai J; Patterson AD; Lai ZC; Paulson RF
    Blood Adv; 2019 Jul; 3(14):2205-2217. PubMed ID: 31324641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SPARC promotes the development of erythroid progenitors.
    Luo Z; Luo P; Yu Y; Zhao Q; Zhao X; Cheng L
    Exp Hematol; 2012 Oct; 40(10):828-36. PubMed ID: 22687753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Introduction to Erythropoiesis Approaches.
    Lloyd JA
    Methods Mol Biol; 2018; 1698():1-10. PubMed ID: 29076081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.