These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 29076148)

  • 1. Behavioral implications of ontogenetic changes in intrinsic hand and foot proportions in olive baboons (Papio Anubis).
    Druelle F; Young J; Berillon G
    Am J Phys Anthropol; 2018 Jan; 165(1):65-76. PubMed ID: 29076148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Grasping primate development: Ontogeny of intrinsic hand and foot proportions in capuchin monkeys (Cebus albifrons and Sapajus apella).
    Young JW; Heard-Booth AN
    Am J Phys Anthropol; 2016 Sep; 161(1):104-15. PubMed ID: 27324663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased performance in juvenile baboons is consistent with ontogenetic changes in morphology.
    Boulinguez-Ambroise G; Herrel A; Berillon G; Young JW; Cornette R; Meguerditchian A; Cazeau C; Bellaiche L; Pouydebat E
    Am J Phys Anthropol; 2021 Jul; 175(3):546-558. PubMed ID: 33483958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Body size and scaling of the hands and feet of prosimian primates.
    Lemelin P; Jungers WL
    Am J Phys Anthropol; 2007 Jun; 133(2):828-40. PubMed ID: 17340639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of body mass distribution on the ontogeny of positional behaviors in non-human primates: Longitudinal follow-up of infant captive olive baboons (Papio anubis).
    Druelle F; Aerts P; Berillon G
    Am J Primatol; 2016 Nov; 78(11):1201-1221. PubMed ID: 27310368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic pressure patterns in the hands of olive baboons (Papio anubis) during terrestrial locomotion: implications for cercopithecoid primate hand morphology.
    Patel BA; Wunderlich RE
    Anat Rec (Hoboken); 2010 Apr; 293(4):710-8. PubMed ID: 20235326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bipedality from locomotor autonomy to adulthood in captive olive baboon (Papio anubis): Cross-sectional follow-up and first insight into the impact of body mass distribution.
    Druelle F; Aerts P; Berillon G
    Am J Phys Anthropol; 2016 Jan; 159(1):73-84. PubMed ID: 26293421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The hands and feet of Archaeolemur: metrical affinities and their functional significance.
    Jungers WL; Lemelin P; Godfrey LR; Wunderlich RE; Burney DA; Simons EL; Chatrath PS; James HF; Randria GF
    J Hum Evol; 2005 Jul; 49(1):36-55. PubMed ID: 15989943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ontogenetic changes in limb postures and their impact on effective limb length in baboons (Papio cynocephalus).
    Zeininger A; Shapiro LJ; Raichlen DA
    Am J Phys Anthropol; 2017 Jun; 163(2):231-241. PubMed ID: 28299784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Segmental morphometrics of the olive baboon (Papio anubis): a longitudinal study from birth to adulthood.
    Druelle F; Aerts P; D'Août K; Moulin V; Berillon G
    J Anat; 2017 Jun; 230(6):805-819. PubMed ID: 28294323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electromyography of wrist and finger flexor muscles in olive baboons (Papio anubis).
    Patel BA; Larson SG; Stern JT
    J Exp Biol; 2012 Jan; 215(Pt 1):115-23. PubMed ID: 22162859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The origin of bipedality as the result of a developmental by-product: The case study of the olive baboon (Papio anubis).
    Druelle F; Aerts P; Berillon G
    J Hum Evol; 2017 Dec; 113():155-161. PubMed ID: 29054165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Get a Grip: Substrate Orientation and Digital Grasping Pressures in Strepsirrhines.
    Congdon KA; Ravosa MJ
    Folia Primatol (Basel); 2016; 87(4):224-243. PubMed ID: 27794576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hindlimb proportions, allometry, and biomechanics in Old World monkeys (primates, Cercopithecidae).
    Strasser E
    Am J Phys Anthropol; 1992 Feb; 87(2):187-213. PubMed ID: 1543245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Convergence of forelimb and hindlimb Natural Pendular Period in baboons (Papio cynocephalus) and its implication for the evolution of primate quadrupedalism.
    Raichlen DA
    J Hum Evol; 2004 Jun; 46(6):719-38. PubMed ID: 15183672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Not all fine-branch locomotion is equal: Grasping morphology determines locomotor performance on narrow supports.
    Young JW; Chadwell BA
    J Hum Evol; 2020 May; 142():102767. PubMed ID: 32240883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GPS-identified, low-level nocturnal activity of vervets (Chlorocebus pygerythrus) and olive baboons (Papio anubis) in Laikipia, Kenya.
    Isbell LA; Bidner LR; Crofoot MC; Matsumoto-Oda A; Farine DR
    Am J Phys Anthropol; 2017 Sep; 164(1):203-211. PubMed ID: 28573721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ontogenetic scaling of fore limb and hind limb joint posture and limb bone cross-sectional geometry in vervets and baboons.
    Burgess ML; Schmitt D; Zeininger A; McFarlin SC; Zihlman AL; Polk JD; Ruff CB
    Am J Phys Anthropol; 2016 Sep; 161(1):72-83. PubMed ID: 27252095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hands of early primates.
    Boyer DM; Yapuncich GS; Chester SG; Bloch JI; Godinot M
    Am J Phys Anthropol; 2013 Dec; 152 Suppl 57():33-78. PubMed ID: 24249591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential limb scaling in the american alligator (Alligator mississippiensis) and its implications for archosaur locomotor evolution.
    Livingston VJ; Bonnan MF; Elsey RM; Sandrik JL; Wilhite DR
    Anat Rec (Hoboken); 2009 Jun; 292(6):787-97. PubMed ID: 19462445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.