These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 29076459)

  • 1. An optimized content-aware image retargeting method: toward expanding the perceived visual field of the high-density retinal prosthesis recipients.
    Li H; Zeng Y; Lu Z; Cao X; Su X; Sui X; Wang J; Chai X
    J Neural Eng; 2018 Apr; 15(2):026025. PubMed ID: 29076459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Image processing strategies based on saliency segmentation for object recognition under simulated prosthetic vision.
    Li H; Su X; Wang J; Kan H; Han T; Zeng Y; Chai X
    Artif Intell Med; 2018 Jan; 84():64-78. PubMed ID: 29129481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Image Processing Strategies Based on a Visual Saliency Model for Object Recognition Under Simulated Prosthetic Vision.
    Wang J; Li H; Fu W; Chen Y; Li L; Lyu Q; Han T; Chai X
    Artif Organs; 2016 Jan; 40(1):94-100. PubMed ID: 25981202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptation to Phosphene Parameters Based on Multi-Object Recognition Using Simulated Prosthetic Vision.
    Xia P; Hu J; Peng Y
    Artif Organs; 2015 Dec; 39(12):1038-45. PubMed ID: 25912967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semantic and structural image segmentation for prosthetic vision.
    Sanchez-Garcia M; Martinez-Cantin R; Guerrero JJ
    PLoS One; 2020; 15(1):e0227677. PubMed ID: 31995568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved visual performance in letter perception through edge orientation encoding in a retinal prosthesis simulation.
    Kiral-Kornek FI; OʼSullivan-Greene E; Savage CO; McCarthy C; Grayden DB; Burkitt AN
    J Neural Eng; 2014 Dec; 11(6):066002. PubMed ID: 25307496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PVGAN: a generative adversarial network for object simplification in prosthetic vision.
    Elnabawy RH; Abdennadher S; Hellwich O; Eldawlatly S
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 35981530
    [No Abstract]   [Full Text] [Related]  

  • 8. Assessing the utility of visual acuity measures in visual prostheses.
    Caspi A; Zivotofsky AZ
    Vision Res; 2015 Mar; 108():77-84. PubMed ID: 25637855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of complex visual tasks using simulated prosthetic vision via augmented-reality glasses.
    Ho E; Boffa J; Palanker D
    J Vis; 2019 Nov; 19(13):22. PubMed ID: 31770773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recognition of objects in simulated irregular phosphene maps for an epiretinal prosthesis.
    Lu Y; Wang J; Wu H; Li L; Cao X; Chai X
    Artif Organs; 2014 Feb; 38(2):E10-20. PubMed ID: 24117959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulated Prosthetic Vision: The Benefits of Computer-Based Object Recognition and Localization.
    Macé MJ; Guivarch V; Denis G; Jouffrais C
    Artif Organs; 2015 Jul; 39(7):E102-13. PubMed ID: 25900238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved content aware scene retargeting for retinitis pigmentosa patients.
    Al-Atabany WI; Tong T; Degenaar PA
    Biomed Eng Online; 2010 Sep; 9():52. PubMed ID: 20846440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recognition of similar objects using simulated prosthetic vision.
    Hu J; Xia P; Gu C; Qi J; Li S; Peng Y
    Artif Organs; 2014 Feb; 38(2):159-67. PubMed ID: 24033534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulating prosthetic vision: Optimizing the information content of a limited visual display.
    van Rheede JJ; Kennard C; Hicks SL
    J Vis; 2010 Dec; 10(14):. PubMed ID: 21191130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Moving object detection and background enhancement for thalamic visual prostheses.
    Abolfotuh HH; Jawwad A; Abdullah B; Mahdi HM; Eldawlatly S
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4711-4714. PubMed ID: 28269323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical Progress and Optimization of Information Processing in Artificial Visual Prostheses.
    Wang J; Zhao R; Li P; Fang Z; Li Q; Han Y; Zhou R; Zhang Y
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36081002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial vision: needs, functioning, and testing of a retinal electronic prosthesis.
    Chader GJ; Weiland J; Humayun MS
    Prog Brain Res; 2009; 175():317-32. PubMed ID: 19660665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Face recognition in simulated prosthetic vision: face detection-based image processing strategies.
    Wang J; Wu X; Lu Y; Wu H; Kan H; Chai X
    J Neural Eng; 2014 Aug; 11(4):046009. PubMed ID: 24921713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of visual perception and learning with a retinal prosthesis.
    Golden JR; Erickson-Davis C; Cottaris NP; Parthasarathy N; Rieke F; Brainard DH; Wandell BA; Chichilnisky EJ
    J Neural Eng; 2019 Apr; 16(2):025003. PubMed ID: 30523985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vision function testing for a suprachoroidal retinal prosthesis: effects of image filtering.
    Barnes N; Scott AF; Lieby P; Petoe MA; McCarthy C; Stacey A; Ayton LN; Sinclair NC; Shivdasani MN; Lovell NH; McDermott HJ; Walker JG
    J Neural Eng; 2016 Jun; 13(3):036013. PubMed ID: 27108845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.