These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 29076459)

  • 21. Typical visual-field locations facilitate access to awareness for everyday objects.
    Kaiser D; Cichy RM
    Cognition; 2018 Nov; 180():118-122. PubMed ID: 30029067
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatiotemporal integration of visual stimuli and its relevance to the use of a divisional power supply scheme for retinal prosthesis.
    Tsai YC; Wu JJ; Lin PK; Lin BJ; Wang PS; Liu CH; Wu CY; Chiao CC
    PLoS One; 2020; 15(2):e0228861. PubMed ID: 32084146
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rehabilitation regimes based upon psychophysical studies of prosthetic vision.
    Chen SC; Suaning GJ; Morley JW; Lovell NH
    J Neural Eng; 2009 Jun; 6(3):035009. PubMed ID: 19458400
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimization of Visual Information Presentation for Visual Prosthesis.
    Guo F; Yang Y; Gao Y
    Int J Biomed Imaging; 2018; 2018():3198342. PubMed ID: 29731769
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Virtual reality simulation of epiretinal stimulation highlights the relevance of the visual angle in prosthetic vision.
    Thorn JT; Migliorini E; Ghezzi D
    J Neural Eng; 2020 Nov; 17(5):056019. PubMed ID: 33146146
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Linkage between retinal ganglion cell density and the nonuniform spatial integration across the visual field.
    Kwon M; Liu R
    Proc Natl Acad Sci U S A; 2019 Feb; 116(9):3827-3836. PubMed ID: 30737290
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Human-in-the-loop optimization of visual prosthetic stimulation.
    Fauvel T; Chalk M
    J Neural Eng; 2022 Jun; 19(3):. PubMed ID: 35667363
    [No Abstract]   [Full Text] [Related]  

  • 28. The role of the visual field size in artificial vision.
    Ghezzi D
    J Neural Eng; 2023 Apr; 20(2):. PubMed ID: 36972584
    [No Abstract]   [Full Text] [Related]  

  • 29. The Argus(®) II Retinal Prosthesis System.
    Luo YH; da Cruz L
    Prog Retin Eye Res; 2016 Jan; 50():89-107. PubMed ID: 26404104
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Visual field changes following implantation of the Argus II retinal prosthesis.
    Rizzo S; Belting C; Cinelli L; Allegrini L
    Graefes Arch Clin Exp Ophthalmol; 2015 Feb; 253(2):323-5. PubMed ID: 25432093
    [No Abstract]   [Full Text] [Related]  

  • 31. Cross-task perceptual learning of object recognition in simulated retinal implant perception.
    Wang L; Sharifian F; Napp J; Nath C; Pollmann S
    J Vis; 2018 Dec; 18(13):22. PubMed ID: 30593067
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simplification of Visual Rendering in Simulated Prosthetic Vision Facilitates Navigation.
    Vergnieux V; Macé MJ; Jouffrais C
    Artif Organs; 2017 Sep; 41(9):852-861. PubMed ID: 28321887
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Facial identification in very low-resolution images simulating prosthetic vision.
    Chang MH; Kim HS; Shin JH; Park KS
    J Neural Eng; 2012 Aug; 9(4):046012. PubMed ID: 22766585
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Image recognition with a limited number of pixels for visual prostheses design.
    Li S; Hu J; Chai X; Peng Y
    Artif Organs; 2012 Mar; 36(3):266-74. PubMed ID: 21954832
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Object recognition and localization enhancement in visual prostheses: a real-time mixed reality simulation.
    Elnabawy RH; Abdennadher S; Hellwich O; Eldawlatly S
    Biomed Eng Online; 2022 Dec; 21(1):91. PubMed ID: 36566183
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An infrared image-enhancement algorithm in simulated prosthetic vision: Enlarging working environment of future retinal prostheses.
    Liang J; Li H; Chen J; Zhai Z; Wang J; Di L; Chai X
    Artif Organs; 2022 Nov; 46(11):2147-2158. PubMed ID: 35377463
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MEMS-based system and image processing strategy for epiretinal prosthesis.
    Xia P; Hu J; Qi J; Gu C; Peng Y
    Biomed Mater Eng; 2015; 26 Suppl 1():S1257-63. PubMed ID: 26405885
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Active confocal imaging for visual prostheses.
    Jung JH; Aloni D; Yitzhaky Y; Peli E
    Vision Res; 2015 Jun; 111(Pt B):182-96. PubMed ID: 25448710
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimization of pillar electrodes in subretinal prosthesis for enhanced proximity to target neurons.
    Flores T; Lei X; Huang T; Lorach H; Dalal R; Galambos L; Kamins T; Mathieson K; Palanker D
    J Neural Eng; 2018 Jun; 15(3):036011. PubMed ID: 29388561
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Visual performance using a retinal prosthesis in three subjects with retinitis pigmentosa.
    Yanai D; Weiland JD; Mahadevappa M; Greenberg RJ; Fine I; Humayun MS
    Am J Ophthalmol; 2007 May; 143(5):820-827. PubMed ID: 17362868
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.