BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 29076463)

  • 1. [Application of intraoperative electromagnetic frameless navigation in transcranial and endoscopic neurosurgical interventions].
    Shurkhay VA; Goryaynov SA; Kutin MA; Eolchiyan SA; Capitanov DN; Fomichev DV; Kalinin PL; Shkarubo AN; Kopachev DN; Melikyan AG; Nersesyan MV; Shkatova AM; Konovalov AN; Potapov AA
    Zh Vopr Neirokhir Im N N Burdenko; 2017; 81(5):5-16. PubMed ID: 29076463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accuracy of intraoperative registration during electromagnetic neuronavigation in intracranial procedures performed in children.
    Barszcz S; Roszkowski M; Daszkiewicz P; Jurkiewicz E; Maryniak A
    Neurol Neurochir Pol; 2007; 41(2):122-7. PubMed ID: 17530573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pinless frameless electromagnetic image-guided neuroendoscopy in children.
    McMillen JL; Vonau M; Wood MJ
    Childs Nerv Syst; 2010 Jul; 26(7):871-8. PubMed ID: 20076987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intraoperative computed tomography registration and electromagnetic neuronavigation for transsphenoidal pituitary surgery: accuracy and time effectiveness.
    Eboli P; Shafa B; Mayberg M
    J Neurosurg; 2011 Feb; 114(2):329-35. PubMed ID: 20560723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Sensor-based detection of skull positioning for image-guided cranial navigation under free head mobility].
    Suess O; Schönherr S; Schilling A; Kühn B; Mularski SO; Suess S; Brock M; Kombos T
    Rofo; 2005 Jul; 177(7):1000-8. PubMed ID: 15973603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intraoperative neurophysiological monitoring in an open low-field magnetic resonance imaging system: clinical experience and technical considerations.
    Szelényi A; Gasser T; Seifert V
    Neurosurgery; 2008 Oct; 63(4 Suppl 2):268-75; discussion 275-6. PubMed ID: 18981832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Neuronavigation in transnasal endoscopic paranasal sinuses and cranial base surgery: comparison of the optical and electromagnetic systems].
    Sieśkiewicz A; Łysoń T; Mariak Z; Rogowski M
    Otolaryngol Pol; 2009; 63(3):256-60. PubMed ID: 19886532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advanced cranial navigation.
    Mert A; Gan LS; Knosp E; Sutherland GR; Wolfsberger S
    Neurosurgery; 2013 Jan; 72 Suppl 1():43-53. PubMed ID: 23254812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electromagnetic-guided neuroendoscopy in the pediatric population.
    Sangra M; Clark S; Hayhurst C; Mallucci C
    J Neurosurg Pediatr; 2009 Apr; 3(4):325-30. PubMed ID: 19338413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frameless neuronavigation in intracranial endoscopic neurosurgery.
    Schroeder HW; Wagner W; Tschiltschke W; Gaab MR
    J Neurosurg; 2001 Jan; 94(1):72-9. PubMed ID: 11147902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of frameless navigation during endoscopic interventions in children with multilocular hydrocephalus.
    Kim SA; Letyagin GV; Danilin VE; Sysoeva AA; Rzaev DA; Moysak GI
    Zh Vopr Neirokhir Im N N Burdenko; 2015; 79(4):61-70. PubMed ID: 26529623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Image-guided surgery for epilepsy].
    Hashizume K; Tanaka T; Kunimoto M; Maeda T; Yonemasu Y
    No Shinkei Geka; 1997 Apr; 25(4):329-35. PubMed ID: 9125716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reliable navigation registration in cranial and spine surgery based on intraoperative computed tomography.
    Carl B; Bopp M; Saß B; Pojskic M; Gjorgjevski M; Voellger B; Nimsky C
    Neurosurg Focus; 2019 Dec; 47(6):E11. PubMed ID: 31786552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined intraoperative magnetic resonance imaging and navigated neuroendoscopy in children with multicompartmental hydrocephalus and complex cysts: a feasibility study.
    Paraskevopoulos D; Biyani N; Constantini S; Beni-Adani L
    J Neurosurg Pediatr; 2011 Sep; 8(3):279-88. PubMed ID: 21882920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Augmented reality-guided neurosurgery: accuracy and intraoperative application of an image projection technique.
    Besharati Tabrizi L; Mahvash M
    J Neurosurg; 2015 Jul; 123(1):206-11. PubMed ID: 25748303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurosurgical craniotomy localization using a virtual reality planning system versus intraoperative image-guided navigation.
    Stadie AT; Kockro RA; Serra L; Fischer G; Schwandt E; Grunert P; Reisch R
    Int J Comput Assist Radiol Surg; 2011 Sep; 6(5):565-72. PubMed ID: 20809398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frameless image-guided neuroendoscopy training in real simulators.
    Coelho G; Kondageski C; Vaz-Guimarães Filho F; Ramina R; Hunhevicz SC; Daga F; Lyra MR; Cavalheiro S; Zymberg ST
    Minim Invasive Neurosurg; 2011 Jun; 54(3):115-8. PubMed ID: 21863518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Awake craniotomy using electromagnetic navigation technology without rigid pin fixation.
    Morsy AA; Ng WH
    J Clin Neurosci; 2015 Nov; 22(11):1827-9. PubMed ID: 26249245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of electromagnetic technology to neuronavigation: a revolution in image-guided neurosurgery.
    Hayhurst C; Byrne P; Eldridge PR; Mallucci CL
    J Neurosurg; 2009 Dec; 111(6):1179-84. PubMed ID: 19326991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preoperative magnetic resonance and intraoperative ultrasound fusion imaging for real-time neuronavigation in brain tumor surgery.
    Prada F; Del Bene M; Mattei L; Lodigiani L; DeBeni S; Kolev V; Vetrano I; Solbiati L; Sakas G; DiMeco F
    Ultraschall Med; 2015 Apr; 36(2):174-86. PubMed ID: 25429625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.