These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 29076566)

  • 1. Free-Standing Metal Oxide Nanoparticle Superlattices Constructed with Engineered Protein Containers Show in Crystallo Catalytic Activity.
    Lach M; Künzle M; Beck T
    Chemistry; 2017 Dec; 23(69):17482-17486. PubMed ID: 29076566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling structure and porosity in catalytic nanoparticle superlattices with DNA.
    Auyeung E; Morris W; Mondloch JE; Hupp JT; Farha OK; Mirkin CA
    J Am Chem Soc; 2015 Feb; 137(4):1658-62. PubMed ID: 25611764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binary Protein Crystals for the Assembly of Inorganic Nanoparticle Superlattices.
    Künzle M; Eckert T; Beck T
    J Am Chem Soc; 2016 Oct; 138(39):12731-12734. PubMed ID: 27617514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA based strategy to nanoparticle superlattices.
    Mazid RR; Si KJ; Cheng W
    Methods; 2014 May; 67(2):215-26. PubMed ID: 24508551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrostatic assembly of binary nanoparticle superlattices using protein cages.
    Kostiainen MA; Hiekkataipale P; Laiho A; Lemieux V; Seitsonen J; Ruokolainen J; Ceci P
    Nat Nanotechnol; 2013 Jan; 8(1):52-6. PubMed ID: 23241655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering catalytic contacts and thermal stability: gold/iron oxide binary nanocrystal superlattices for CO oxidation.
    Kang Y; Ye X; Chen J; Qi L; Diaz RE; Doan-Nguyen V; Xing G; Kagan CR; Li J; Gorte RJ; Stach EA; Murray CB
    J Am Chem Soc; 2013 Jan; 135(4):1499-505. PubMed ID: 23294105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanostructured catalysts for organic transformations.
    Chng LL; Erathodiyil N; Ying JY
    Acc Chem Res; 2013 Aug; 46(8):1825-37. PubMed ID: 23350747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural diversity in binary nanoparticle superlattices.
    Shevchenko EV; Talapin DV; Kotov NA; O'Brien S; Murray CB
    Nature; 2006 Jan; 439(7072):55-9. PubMed ID: 16397494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural characterization of self-assembled multifunctional binary nanoparticle superlattices.
    Shevchenko EV; Talapin DV; Murray CB; O'Brien S
    J Am Chem Soc; 2006 Mar; 128(11):3620-37. PubMed ID: 16536535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoparticle Superlattices: The Roles of Soft Ligands.
    Si KJ; Chen Y; Shi Q; Cheng W
    Adv Sci (Weinh); 2018 Jan; 5(1):1700179. PubMed ID: 29375958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchically self-assembled hexagonal honeycomb and kagome superlattices of binary 1D colloids.
    Lim SH; Lee T; Oh Y; Narayanan T; Sung BJ; Choi SM
    Nat Commun; 2017 Aug; 8(1):360. PubMed ID: 28842555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assembly of Differently Sized Supercharged Protein Nanocages into Superlattices for Construction of Binary Nanoparticle-Protein Materials.
    Rütten M; Lang L; Wagler H; Lach M; Mucke N; Laugks U; Seuring C; Keller TF; Stierle A; Ginn HM; Beck T
    ACS Nano; 2024 Sep; 18(36):25325-25336. PubMed ID: 39189351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoscale form dictates mesoscale function in plasmonic DNA-nanoparticle superlattices.
    Ross MB; Ku JC; Vaccarezza VM; Schatz GC; Mirkin CA
    Nat Nanotechnol; 2015 May; 10(5):453-8. PubMed ID: 25867942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free-standing nanoparticle superlattice sheets controlled by DNA.
    Cheng W; Campolongo MJ; Cha JJ; Tan SJ; Umbach CC; Muller DA; Luo D
    Nat Mater; 2009 Jun; 8(6):519-25. PubMed ID: 19404241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmon nanoparticle superlattices as optical-frequency magnetic metamaterials.
    Alaeian H; Dionne JA
    Opt Express; 2012 Jul; 20(14):15781-96. PubMed ID: 22772268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topotactic interconversion of nanoparticle superlattices.
    Macfarlane RJ; Jones MR; Lee B; Auyeung E; Mirkin CA
    Science; 2013 Sep; 341(6151):1222-5. PubMed ID: 23970559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-step synthesis and self-assembly of metal oxide nanoparticles into 3D superlattices.
    Pucci A; Willinger MG; Liu F; Zeng X; Rebuttini V; Clavel G; Bai X; Ungar G; Pinna N
    ACS Nano; 2012 May; 6(5):4382-91. PubMed ID: 22497204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstitutable nanoparticle superlattices.
    Radha B; Senesi AJ; O'Brien MN; Wang MX; Auyeung E; Lee B; Mirkin CA
    Nano Lett; 2014; 14(4):2162-7. PubMed ID: 24641553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein Cage Directed Assembly of Binary Nanoparticle Superlattices.
    Zhou Y; Shaukat A; Seitsonen J; Rigoni C; Timonen JVI; Kostiainen MA
    Adv Sci (Weinh); 2024 Dec; 11(45):e2408416. PubMed ID: 39401426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable SERS Platforms from Small Nanoparticle 3D Superlattices: A Comparison between Gold, Silver, and Copper.
    Chapus L; Aubertin P; Joiret S; Lucas IT; Maisonhaute E; Courty A
    Chemphyschem; 2017 Nov; 18(21):3066-3075. PubMed ID: 28862382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.