These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 29076647)

  • 1. Comparative Study of Strain-Dependent Structural Changes of Silkworm Silks: Insight into the Structural Origin of Strain-Stiffening.
    Guo C; Zhang J; Wang X; Nguyen AT; Liu XY; Kaplan DL
    Small; 2017 Dec; 13(47):. PubMed ID: 29076647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precise correlation of macroscopic mechanical properties and microscopic structures of animal silks-using Antheraea pernyi silkworm silk as an example.
    Fang G; Tang Y; Qi Z; Yao J; Shao Z; Chen X
    J Mater Chem B; 2017 Aug; 5(30):6042-6048. PubMed ID: 32264361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural Comparison of Various Silkworm Silks: An Insight into the Structure-Property Relationship.
    Guo C; Zhang J; Jordan JS; Wang X; Henning RW; Yarger JL
    Biomacromolecules; 2018 Mar; 19(3):906-917. PubMed ID: 29425447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the Mechanical Properties and Structure Transition of Antheraea pernyi Silk Fiber Induced by Its Contraction.
    Wang Y; Wen J; Peng B; Hu B; Chen X; Shao Z
    Biomacromolecules; 2018 Jun; 19(6):1999-2006. PubMed ID: 29401377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insight into the structure of single Antheraea pernyi silkworm fibers using synchrotron FTIR microspectroscopy.
    Ling S; Qi Z; Knight DP; Huang Y; Huang L; Zhou H; Shao Z; Chen X
    Biomacromolecules; 2013 Jun; 14(6):1885-92. PubMed ID: 23607809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical properties and toughening mechanisms of natural silkworm silks and their composites.
    Yang K; Guan J; Shao Z; Ritchie RO
    J Mech Behav Biomed Mater; 2020 Oct; 110():103942. PubMed ID: 32957236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using solvents with different molecular sizes to investigate the structure of Antheraea pernyi silk.
    Wang Y; Porter D; Shao Z
    Biomacromolecules; 2013 Nov; 14(11):3936-42. PubMed ID: 24044634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploration of the tight structural-mechanical relationship in mulberry and non-mulberry silkworm silks.
    Fang G; Sapru S; Behera S; Yao J; Shao Z; Kundu SC; Chen X
    J Mater Chem B; 2016 Jun; 4(24):4337-4347. PubMed ID: 32263416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microstructures and mechanical properties of silks of silkworm and honeybee.
    Zhang K; Si FW; Duan HL; Wang J
    Acta Biomater; 2010 Jun; 6(6):2165-71. PubMed ID: 20026439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and optical studies on selected web spinning spider silks.
    Karthikeyani R; Divya A; Mathavan T; Asath RM; Benial AM; Muthuchelian K
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jan; 170():111-6. PubMed ID: 27423109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analyis of structure/property relationships in silkworm (Bombyx mori) and spider dragline (Nephila edulis) silks using Raman spectroscopy.
    Sirichaisit J; Brookes VL; Young RJ; Vollrath F
    Biomacromolecules; 2003; 4(2):387-94. PubMed ID: 12625736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the variability of properties in Antheraea pernyi silk fibres.
    Wang Y; Guan J; Hawkins N; Porter D; Shao Z
    Soft Matter; 2014 Sep; 10(33):6321-31. PubMed ID: 25030083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical properties and structure of silkworm cocoons: a comparative study of Bombyx mori, Antheraea assamensis, Antheraea pernyi and Antheraea mylitta silkworm cocoons.
    Zhang J; Kaur J; Rajkhowa R; Li JL; Liu XY; Wang XG
    Mater Sci Eng C Mater Biol Appl; 2013 Aug; 33(6):3206-13. PubMed ID: 23706202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanovoid formation induces property variation within and across individual silkworm silk threads.
    Craig HC; Yao Y; Ariotti N; Setty M; Remadevi R; Kasumovic MM; Rajkhowa R; Rawal A; Blamires SJ
    J Mater Chem B; 2022 Jul; 10(29):5561-5570. PubMed ID: 35388855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the in vitro and in vivo degradations of silk fibroin scaffolds from mulberry and nonmulberry silkworms.
    You R; Xu Y; Liu Y; Li X; Li M
    Biomed Mater; 2014 Dec; 10(1):015003. PubMed ID: 25532470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and properties of regenerated Antheraea pernyi silk fibroin in aqueous solution.
    Tao W; Li M; Zhao C
    Int J Biol Macromol; 2007 Apr; 40(5):472-8. PubMed ID: 17173967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural characterization of nanofiber silk produced by embiopterans (webspinners).
    Addison JB; Popp TM; Weber WS; Edgerly JS; Holland GP; Yarger JL
    RSC Adv; 2014; 4(78):41301-41313. PubMed ID: 25383190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synchrotron FTIR microspectroscopy of single natural silk fibers.
    Ling S; Qi Z; Knight DP; Shao Z; Chen X
    Biomacromolecules; 2011 Sep; 12(9):3344-9. PubMed ID: 21790142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ biomineralization by silkworm feeding with ion precursors for the improved mechanical properties of silk fiber.
    Guo Z; Xie W; Gao Q; Wang D; Gao F; Li S; Zhao L
    Int J Biol Macromol; 2018 Apr; 109():21-26. PubMed ID: 29223755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Directly obtaining high strength silk fiber from silkworm by feeding carbon nanotubes.
    Wang JT; Li LL; Zhang MY; Liu SL; Jiang LH; Shen Q
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():417-21. PubMed ID: 24268277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.