These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 29076650)
1. Dual-Graphene Rechargeable Sodium Battery. Wang F; Liu Z; Zhang P; Li H; Sheng W; Zhang T; Jordan R; Wu Y; Zhuang X; Feng X Small; 2017 Dec; 13(47):. PubMed ID: 29076650 [TBL] [Abstract][Full Text] [Related]
2. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
3. Electrochemically Exfoliated Graphene Electrode for High-Performance Rechargeable Chloroaluminate and Dual-Ion Batteries. Ejigu A; Le Fevre LW; Fujisawa K; Terrones M; Forsyth AJ; Dryfe RAW ACS Appl Mater Interfaces; 2019 Jul; 11(26):23261-23270. PubMed ID: 31252480 [TBL] [Abstract][Full Text] [Related]
4. Poly(benzoquinonyl sulfide) as a High-Energy Organic Cathode for Rechargeable Li and Na Batteries. Song Z; Qian Y; Zhang T; Otani M; Zhou H Adv Sci (Weinh); 2015 Sep; 2(9):1500124. PubMed ID: 27980977 [TBL] [Abstract][Full Text] [Related]
5. Magnesium-Sodium Hybrid Battery With High Voltage, Capacity and Cyclability. Zhang R; Tutusaus O; Mohtadi R; Ling C Front Chem; 2018; 6():611. PubMed ID: 30619820 [TBL] [Abstract][Full Text] [Related]
6. Surface-Engineered Black Niobium Oxide@Graphene Nanosheets for High-Performance Sodium-/Potassium-Ion Full Batteries. Tong Z; Yang R; Wu S; Shen D; Jiao T; Zhang K; Zhang W; Lee CS Small; 2019 Jul; 15(28):e1901272. PubMed ID: 31165571 [TBL] [Abstract][Full Text] [Related]
7. High Specific Power Dual-Metal-Ion Rechargeable Microbatteries Based on LiMn Trócoli R; Morata A; Fehse M; Stchakovsky M; Sepúlveda A; Tarancón A ACS Appl Mater Interfaces; 2017 Sep; 9(38):32713-32719. PubMed ID: 28885817 [TBL] [Abstract][Full Text] [Related]
8. Energetic aqueous rechargeable sodium-ion battery based on Na2 CuFe(CN)6 -NaTi2 (PO4 )3 intercalation chemistry. Wu XY; Sun MY; Shen YF; Qian JF; Cao YL; Ai XP; Yang HX ChemSusChem; 2014 Feb; 7(2):407-11. PubMed ID: 24464957 [TBL] [Abstract][Full Text] [Related]
9. Evolution of strategies for modern rechargeable batteries. Goodenough JB Acc Chem Res; 2013 May; 46(5):1053-61. PubMed ID: 22746097 [TBL] [Abstract][Full Text] [Related]
10. First-Principles Study of Lithium Borocarbide as a Cathode Material for Rechargeable Li ion Batteries. Xu Q; Ban C; Dillon AC; Wei SH; Zhao Y J Phys Chem Lett; 2011 May; 2(10):1129-32. PubMed ID: 26295314 [TBL] [Abstract][Full Text] [Related]
11. Aqueous Rechargeable Zinc/Aluminum Ion Battery with Good Cycling Performance. Wang F; Yu F; Wang X; Chang Z; Fu L; Zhu Y; Wen Z; Wu Y; Huang W ACS Appl Mater Interfaces; 2016 Apr; 8(14):9022-9. PubMed ID: 26716878 [TBL] [Abstract][Full Text] [Related]
12. A Dual-Stimuli-Responsive Sodium-Bromine Battery with Ultrahigh Energy Density. Wang F; Yang H; Zhang J; Zhang P; Wang G; Zhuang X; Cuniberti G; Feng X Adv Mater; 2018 Jun; 30(23):e1800028. PubMed ID: 29707829 [TBL] [Abstract][Full Text] [Related]
13. First-Principles Understanding of the Staging Properties of the Graphite Intercalation Compounds towards Dual-Ion Battery Applications. Zhou W; Sit PH ACS Omega; 2020 Jul; 5(29):18289-18300. PubMed ID: 32743204 [TBL] [Abstract][Full Text] [Related]
14. Exfoliated transition metal dichalcogenide nanosheets for supercapacitor and sodium ion battery applications. Mukherjee S; Turnley J; Mansfield E; Holm J; Soares D; David L; Singh G R Soc Open Sci; 2019 Aug; 6(8):190437. PubMed ID: 31598243 [TBL] [Abstract][Full Text] [Related]
15. Challenges and prospects of lithium-sulfur batteries. Manthiram A; Fu Y; Su YS Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063 [TBL] [Abstract][Full Text] [Related]
16. All Carbon Dual Ion Batteries. Hu Z; Liu Q; Zhang K; Zhou L; Li L; Chen M; Tao Z; Kang YM; Mai L; Chou SL; Chen J; Dou SX ACS Appl Mater Interfaces; 2018 Oct; 10(42):35978-35983. PubMed ID: 30207686 [TBL] [Abstract][Full Text] [Related]
17. Ultrafast Charging High Capacity Asphalt-Lithium Metal Batteries. Wang T; Villegas Salvatierra R; Jalilov AS; Tian J; Tour JM ACS Nano; 2017 Nov; 11(11):10761-10767. PubMed ID: 28953348 [TBL] [Abstract][Full Text] [Related]
18. A DFT study on graphene, SiC, BN, and AlN nanosheets as anodes in Na-ion batteries. Hosseinian A; Khosroshahi ES; Nejati K; Edjlali E; Vessally E J Mol Model; 2017 Nov; 23(12):354. PubMed ID: 29177629 [TBL] [Abstract][Full Text] [Related]
19. Towards K-Ion and Na-Ion Batteries as "Beyond Li-Ion". Kubota K; Dahbi M; Hosaka T; Kumakura S; Komaba S Chem Rec; 2018 Apr; 18(4):459-479. PubMed ID: 29442429 [TBL] [Abstract][Full Text] [Related]
20. Real-time imaging of Na Sun J; Sadd M; Edenborg P; Grönbeck H; Thiesen PH; Xia Z; Quintano V; Qiu R; Matic A; Palermo V Sci Adv; 2021 May; 7(22):. PubMed ID: 34049889 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]