These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 29077104)

  • 1. Polydopamine-based concentric nanoshells with programmable architectures and plasmonic properties.
    Choi CKK; Zhuo X; Chiu YTE; Yang H; Wang J; Choi CHJ
    Nanoscale; 2017 Nov; 9(43):16968-16980. PubMed ID: 29077104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnesium for Dynamic Nanoplasmonics.
    Duan X; Liu N
    Acc Chem Res; 2019 Jul; 52(7):1979-1989. PubMed ID: 31246401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shedding light on the growth of gold nanoshells.
    Sauerbeck C; Haderlein M; Schürer B; Braunschweig B; Peukert W; Klupp Taylor RN
    ACS Nano; 2014 Mar; 8(3):3088-96. PubMed ID: 24552660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ growth of hollow gold-silver nanoshells within porous silica offers tunable plasmonic extinctions and enhanced colloidal stability.
    Li CH; Jamison AC; Rittikulsittichai S; Lee TC; Lee TR
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19943-50. PubMed ID: 25321928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved synthesis of gold and silver nanoshells.
    Brito-Silva AM; Sobral-Filho RG; Barbosa-Silva R; de Araújo CB; Galembeck A; Brolo AG
    Langmuir; 2013 Apr; 29(13):4366-72. PubMed ID: 23472978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geometrical Parameter Effect on Plasmonic Scattering of Bimetallic Three-Layered Nanoshells.
    Hu JB; Chen YL; Li J; Ma YW; Shu CC
    Nanomaterials (Basel); 2022 Oct; 12(21):. PubMed ID: 36364594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable Fano resonance in symmetric multilayered gold nanoshells.
    Peña-Rodríguez O; Rivera A; Campoy-Quiles M; Pal U
    Nanoscale; 2013 Jan; 5(1):209-16. PubMed ID: 23151994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multifunctional compact hybrid Au nanoshells: a new generation of nanoplasmonic probes for biosensing, imaging, and controlled release.
    Jin Y
    Acc Chem Res; 2014 Jan; 47(1):138-48. PubMed ID: 23992824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silica-metal core-shell nanostructures.
    Jankiewicz BJ; Jamiola D; Choma J; Jaroniec M
    Adv Colloid Interface Sci; 2012 Jan; 170(1-2):28-47. PubMed ID: 22137102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Symmetry breaking in gold-silica-gold multilayer nanoshells.
    Hu Y; Noelck SJ; Drezek RA
    ACS Nano; 2010 Mar; 4(3):1521-8. PubMed ID: 20146507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fano-like resonances in split concentric nanoshell dimers in designing negative-index metamaterials for biological-chemical sensing and spectroscopic purposes.
    Ahmadivand A; Karabiyik M; Pala N
    Appl Spectrosc; 2015 May; 69(5):563-73. PubMed ID: 25811974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Core-satellite assembly of gold nanoshells on solid gold nanoparticles for a color coding plasmonic nanosensor.
    Le NH; Cathcart N; Kitaev V; Chen JIL
    Analyst; 2021 Dec; 147(1):155-164. PubMed ID: 34860213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
    Nam JM; Oh JW; Lee H; Suh YD
    Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetically Tunable Plasmon Coupling of Au Nanoshells Enabled by Space-Free Confined Growth.
    Li Z; Fan Q; Wu C; Li Y; Cheng C; Yin Y
    Nano Lett; 2020 Nov; 20(11):8242-8249. PubMed ID: 33054229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple Stepwise Synthetic Pathways toward Complex Plasmonic 2D and 3D Nanoframes for Generation of Electromagnetic Hot Zones in a Single Entity.
    Jung I; Kim J; Lee S; Park W; Park S
    Acc Chem Res; 2023 Feb; 56(3):270-283. PubMed ID: 36693060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excitation and tuning of Fano-like cavity plasmon resonances in dielectric-metal core-shell resonators.
    Gu P; Wan M; Wu W; Chen Z; Wang Z
    Nanoscale; 2016 May; 8(19):10358-63. PubMed ID: 27139034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A rational design of multimodal asymmetric nanoshells as efficient tunable absorbers within the biological optical window.
    Souri S; Hadilou N; Navid HA; Sadighi Bonabi R; Anvari A
    Sci Rep; 2021 Jul; 11(1):15115. PubMed ID: 34302000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple Fano resonances in single-layer nonconcentric core-shell nanostructures.
    Zhang J; Zayats A
    Opt Express; 2013 Apr; 21(7):8426-36. PubMed ID: 23571932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband absorption enhancement in plasmonic nanoshells-based ultrathin microcrystalline-Si solar cells.
    Raja W; Bozzola A; Zilio P; Miele E; Panaro S; Wang H; Toma A; Alabastri A; De Angelis F; Zaccaria RP
    Sci Rep; 2016 Apr; 6():24539. PubMed ID: 27080420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.