These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 29077121)
41. Chemical Interface Damping in Nonstoichiometric Semiconductor Plasmonic Nanocrystals: An Effect of the Surrounding Environment. Ghorai N; Ghosh HN Langmuir; 2022 May; 38(18):5339-5350. PubMed ID: 35491746 [TBL] [Abstract][Full Text] [Related]
42. Surface Depletion Layers in Plasmonic Metal Oxide Nanocrystals. Gibbs SL; Staller CM; Milliron DJ Acc Chem Res; 2019 Sep; 52(9):2516-2524. PubMed ID: 31424914 [TBL] [Abstract][Full Text] [Related]
43. Quantifying Wavelength-Dependent Plasmonic Hot Carrier Energy Distributions at Metal/Semiconductor Interfaces. Yu Y; Wijesekara KD; Xi X; Willets KA ACS Nano; 2019 Mar; 13(3):3629-3637. PubMed ID: 30807695 [TBL] [Abstract][Full Text] [Related]
44. Photoredox Organic Synthesis Employing Heterogeneous Photocatalysts with Emphasis on Halide Perovskite. Lin Y; Guo J; San Martin J; Han C; Martinez R; Yan Y Chemistry; 2020 Oct; 26(58):13118-13136. PubMed ID: 32533611 [TBL] [Abstract][Full Text] [Related]
45. Turning Au Nanoclusters Catalytically Active for Visible-Light-Driven CO Cui X; Wang J; Liu B; Ling S; Long R; Xiong Y J Am Chem Soc; 2018 Dec; 140(48):16514-16520. PubMed ID: 30407807 [TBL] [Abstract][Full Text] [Related]
46. Mechanism of visible light photocatalytic NO(x) oxidation with plasmonic Bi cocatalyst-enhanced (BiO)2CO3 hierarchical microspheres. Sun Y; Zhao Z; Dong F; Zhang W Phys Chem Chem Phys; 2015 Apr; 17(16):10383-90. PubMed ID: 25765222 [TBL] [Abstract][Full Text] [Related]
47. New insight into daylight photocatalysis of AgBr@Ag: synergistic effect between semiconductor photocatalysis and plasmonic photocatalysis. Jiang J; Li H; Zhang L Chemistry; 2012 May; 18(20):6360-9. PubMed ID: 22517472 [TBL] [Abstract][Full Text] [Related]
48. A Schottky-Barrier-Free Plasmonic Semiconductor Photocatalyst for Nitrogen Fixation in a "One-Stone-Two-Birds" Manner. Bai H; Lam SH; Yang J; Cheng X; Li S; Jiang R; Shao L; Wang J Adv Mater; 2022 Jan; 34(2):e2104226. PubMed ID: 34655458 [TBL] [Abstract][Full Text] [Related]
49. Plasmonic Coupling Architectures for Enhanced Photocatalysis. Liu D; Xue C Adv Mater; 2021 Nov; 33(46):e2005738. PubMed ID: 33891777 [TBL] [Abstract][Full Text] [Related]
50. Anisotropic Heavy-Metal-Free Semiconductor Nanocrystals: Synthesis, Properties, and Applications. Liu L; Bai B; Yang X; Du Z; Jia G Chem Rev; 2023 Apr; 123(7):3625-3692. PubMed ID: 36946890 [TBL] [Abstract][Full Text] [Related]
51. 3D branched ZnO nanowire arrays decorated with plasmonic au nanoparticles for high-performance photoelectrochemical water splitting. Zhang X; Liu Y; Kang Z ACS Appl Mater Interfaces; 2014 Mar; 6(6):4480-9. PubMed ID: 24598779 [TBL] [Abstract][Full Text] [Related]
52. Nanoarchitectonics of a Au nanoprism array on WO Chen X; Li P; Tong H; Kako T; Ye J Sci Technol Adv Mater; 2011 Aug; 12(4):044604. PubMed ID: 27877412 [TBL] [Abstract][Full Text] [Related]
54. Multichannel Charge Transfer and Mechanistic Insight in Metal Decorated 2D-2D Bi Yuan L; Weng B; Colmenares JC; Sun Y; Xu YJ Small; 2017 Dec; 13(48):. PubMed ID: 29044969 [TBL] [Abstract][Full Text] [Related]
55. Quantum confined colloidal nanorod heterostructures for solar-to-fuel conversion. Wu K; Lian T Chem Soc Rev; 2016 Jul; 45(14):3781-810. PubMed ID: 27043714 [TBL] [Abstract][Full Text] [Related]
56. Enhanced Piezo-Photoelectric Catalysis with Oriented Carrier Migration in Asymmetric Au-ZnO Nanorod Array. Xiang D; Liu Z; Wu M; Liu H; Zhang X; Wang Z; Wang ZL; Li L Small; 2020 May; 16(18):e1907603. PubMed ID: 32270918 [TBL] [Abstract][Full Text] [Related]
57. Elucidating Facet-Dependent Photocatalytic Activities of Metastable CdS and Au@CdS Core-Shell Nanocrystals. Ge F; Zhao Y; Feng C; Li X; Wang J; Liu H; Hu L; Chen Y; Chen F; Cheng F; Wei HY; Wu XJ ACS Appl Mater Interfaces; 2024 Jun; 16(25):32847-32856. PubMed ID: 38862405 [TBL] [Abstract][Full Text] [Related]
58. The surface plasmon-induced hot carrier effect on the catalytic activity of CO oxidation on a Cu Lee SW; Hong JW; Lee H; Wi DH; Kim SM; Han SW; Park JY Nanoscale; 2018 Jun; 10(23):10835-10843. PubMed ID: 29694476 [TBL] [Abstract][Full Text] [Related]
59. Generating plasmonic heterostructures by cation exchange and redox reactions of covellite CuS nanocrystals with Au Hu C; Chen W; Xie Y; Verma SK; Destro P; Zhan G; Chen X; Zhao X; Schuck PJ; Kriegel I; Manna L Nanoscale; 2018 Feb; 10(6):2781-2789. PubMed ID: 29359781 [TBL] [Abstract][Full Text] [Related]
60. Asymmetric synthesis of Au-CdSe core-semishell nanorods for plasmon-enhanced visible-light-driven hydrogen evolution. Wang PF; Chen K; Ma S; Wang W; Qiu YH; Ding SJ; Liang S; Wang QQ Nanoscale; 2020 Jan; 12(2):687-694. PubMed ID: 31829357 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]