These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Electromagnetic Enhancement of Graphene Raman Spectroscopy by Ordered and Size-Tunable Au Nanostructures. Zhang S; Zhang X; Liu X Nanoscale Res Lett; 2015 Dec; 10(1):390. PubMed ID: 26439619 [TBL] [Abstract][Full Text] [Related]
6. Plasmonic-enhanced Raman scattering of graphene on growth substrates and its application in SERS. Zhao Y; Chen G; Du Y; Xu J; Wu S; Qu Y; Zhu Y Nanoscale; 2014 Nov; 6(22):13754-60. PubMed ID: 25285780 [TBL] [Abstract][Full Text] [Related]
7. Spectral and Angle-Resolved Magneto-Optical Characterization of Photonic Nanostructures. Kataja M; Cichelero R; Herranz G J Vis Exp; 2019 Nov; (153):. PubMed ID: 31814609 [TBL] [Abstract][Full Text] [Related]
8. Tunable broadband plasmonic field enhancement on a graphene surface using a normal-incidence plane wave at mid-infrared frequencies. Zhang T; Chen L; Wang B; Li X Sci Rep; 2015 Jun; 5():11195. PubMed ID: 26057188 [TBL] [Abstract][Full Text] [Related]
9. Broadband near-field enhancement in the macro-periodic and micro-random structure with a hybridized excitation of propagating Bloch-plasmonic and localized surface-plasmonic modes. Lu H; Ren X; Sha WE; Ho HP; Choy WC Nanoscale; 2015 Oct; 7(40):16798-804. PubMed ID: 26400003 [TBL] [Abstract][Full Text] [Related]
11. Effects of the rotation angle on surface plasmon coupling of nanoprisms. Chien MH; Nien LW; Chao BK; Li JH; Hsueh CH Nanoscale; 2016 Feb; 8(6):3660-70. PubMed ID: 26809737 [TBL] [Abstract][Full Text] [Related]
12. Effect of Ethanethiolate Spacer on Morphology and Optical Responses of Ag Nanoparticle Array-Single Layer Graphene Hybrid Systems. Sutrová V; Šloufová I; Melníková Z; Kalbáč M; Pavlova E; Vlčková B Langmuir; 2017 Dec; 33(50):14414-14424. PubMed ID: 29172530 [TBL] [Abstract][Full Text] [Related]
13. Strong light-matter interactions in sub-nanometer gaps defined by monolayer graphene: toward highly sensitive SERS substrates. Zhao Y; Li X; Du Y; Chen G; Qu Y; Jiang J; Zhu Y Nanoscale; 2014 Oct; 6(19):11112-20. PubMed ID: 25214169 [TBL] [Abstract][Full Text] [Related]
14. Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy. Kleinman SL; Sharma B; Blaber MG; Henry AI; Valley N; Freeman RG; Natan MJ; Schatz GC; Van Duyne RP J Am Chem Soc; 2013 Jan; 135(1):301-8. PubMed ID: 23214430 [TBL] [Abstract][Full Text] [Related]
15. Experimental observed plasmon near-field response in isolated suspended graphene resonators. Zhang N; Jiang X; Fan J; Luo W; Xiang Y; Wu W; Ren M; Zhang X; Cai W; Xu J Nanotechnology; 2019 Dec; 30(50):505201. PubMed ID: 31491784 [TBL] [Abstract][Full Text] [Related]
16. Quantitative Plasmon Mode and Surface-Enhanced Raman Scattering Analyses of Strongly Coupled Plasmonic Nanotrimers with Diverse Geometries. Lee H; Kim GH; Lee JH; Kim NH; Nam JM; Suh YD Nano Lett; 2015 Jul; 15(7):4628-36. PubMed ID: 26075353 [TBL] [Abstract][Full Text] [Related]
17. Tailored surface-enhanced Raman nanopillar arrays fabricated by laser-assisted replication for biomolecular detection using organic semiconductor lasers. Liu X; Lebedkin S; Besser H; Pfleging W; Prinz S; Wissmann M; Schwab PM; Nazarenko I; Guttmann M; Kappes MM; Lemmer U ACS Nano; 2015 Jan; 9(1):260-70. PubMed ID: 25514354 [TBL] [Abstract][Full Text] [Related]
18. Surface-enhanced Raman scattering of single- and few-layer graphene by the deposition of gold nanoparticles. Lee J; Shim S; Kim B; Shin HS Chemistry; 2011 Feb; 17(8):2381-7. PubMed ID: 21264961 [TBL] [Abstract][Full Text] [Related]
19. Probing the in-Plane Near-Field Enhancement Limit in a Plasmonic Particle-on-Film Nanocavity with Surface-Enhanced Raman Spectroscopy of Graphene. Liu D; Wu T; Zhang Q; Wang X; Guo X; Su Y; Zhu Y; Shao M; Chen H; Luo Y; Lei D ACS Nano; 2019 Jul; 13(7):7644-7654. PubMed ID: 31244032 [TBL] [Abstract][Full Text] [Related]