These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 29077207)

  • 1. A "plug-n-play" modular metabolic system for the production of apocarotenoids.
    Zhang C; Chen X; Lindley ND; Too HP
    Biotechnol Bioeng; 2018 Jan; 115(1):174-183. PubMed ID: 29077207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A modular pathway engineering strategy for the high-level production of β-ionone in Yarrowia lipolytica.
    Lu Y; Yang Q; Lin Z; Yang X
    Microb Cell Fact; 2020 Feb; 19(1):49. PubMed ID: 32103761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of β-ionone by combined expression of carotenogenic and plant CCD1 genes in Saccharomyces cerevisiae.
    López J; Essus K; Kim IK; Pereira R; Herzog J; Siewers V; Nielsen J; Agosin E
    Microb Cell Fact; 2015 Jun; 14():84. PubMed ID: 26063466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating Enzyme and Metabolic Engineering Tools for Enhanced α-Ionone Production.
    Chen X; Shukal S; Zhang C
    J Agric Food Chem; 2019 Dec; 67(49):13451-13459. PubMed ID: 31079451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering the oleaginous yeast Yarrowia lipolytica to produce the aroma compound β-ionone.
    Czajka JJ; Nathenson JA; Benites VT; Baidoo EEK; Cheng Q; Wang Y; Tang YJ
    Microb Cell Fact; 2018 Sep; 17(1):136. PubMed ID: 30172260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein engineering of carotenoid cleavage dioxygenases to optimize β-ionone biosynthesis in yeast cell factories.
    Werner N; Ramirez-Sarmiento CA; Agosin E
    Food Chem; 2019 Nov; 299():125089. PubMed ID: 31319343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modular pathway engineering for resveratrol and piceatannol production in engineered Escherichia coli.
    Shrestha A; Pandey RP; Pokhrel AR; Dhakal D; Chu LL; Sohng JK
    Appl Microbiol Biotechnol; 2018 Nov; 102(22):9691-9706. PubMed ID: 30178203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mediating oxidative stress enhances α-ionone biosynthesis and strain robustness during process scaling up.
    Huang CN; Lim X; Ong L; Lim C; Chen X; Zhang C
    Microb Cell Fact; 2022 Nov; 21(1):246. PubMed ID: 36424649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. L-Cysteine Production in Escherichia coli Based on Rational Metabolic Engineering and Modular Strategy.
    Liu H; Fang G; Wu H; Li Z; Ye Q
    Biotechnol J; 2018 May; 13(5):e1700695. PubMed ID: 29405609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering Escherichia coli for malate production by integrating modular pathway characterization with CRISPRi-guided multiplexed metabolic tuning.
    Gao C; Wang S; Hu G; Guo L; Chen X; Xu P; Liu L
    Biotechnol Bioeng; 2018 Mar; 115(3):661-672. PubMed ID: 29105733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromosome engineering of Escherichia coli for constitutive production of salvianic acid A.
    Zhou L; Ding Q; Jiang GZ; Liu ZN; Wang HY; Zhao GR
    Microb Cell Fact; 2017 May; 16(1):84. PubMed ID: 28511681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redesign and reconstruction of a steviol-biosynthetic pathway for enhanced production of steviol in Escherichia coli.
    Moon JH; Lee K; Lee JH; Lee PC
    Microb Cell Fact; 2020 Feb; 19(1):20. PubMed ID: 32013995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De novo biosynthesis of complex natural product sakuranetin using modular co-culture engineering.
    Wang X; Li Z; Policarpio L; Koffas MAG; Zhang H
    Appl Microbiol Biotechnol; 2020 Jun; 104(11):4849-4861. PubMed ID: 32285175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rational design and metabolic analysis of Escherichia coli for effective production of L-tryptophan at high concentration.
    Chen L; Zeng AP
    Appl Microbiol Biotechnol; 2017 Jan; 101(2):559-568. PubMed ID: 27599980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. De Novo Synthesis of Dihydro-β-ionone through Metabolic Engineering and Bacterium-Yeast Coculture.
    Qi Z; Tong X; Ke K; Wang X; Pei J; Bu S; Zhao L
    J Agric Food Chem; 2024 Feb; 72(6):3066-3076. PubMed ID: 38294193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recovery of Natural α-Ionone from Fermentation Broth.
    Lukin I; Jach G; Wingartz I; Welters P; Schembecker G
    J Agric Food Chem; 2019 Dec; 67(49):13412-13419. PubMed ID: 30864443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combinatorial pathway optimization in Escherichia coli by directed co-evolution of rate-limiting enzymes and modular pathway engineering.
    Lv X; Gu J; Wang F; Xie W; Liu M; Ye L; Yu H
    Biotechnol Bioeng; 2016 Dec; 113(12):2661-2669. PubMed ID: 27316379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manipulation of the precursor supply for high-level production of longifolene by metabolically engineered Escherichia coli.
    Cao Y; Zhang R; Liu W; Zhao G; Niu W; Guo J; Xian M; Liu H
    Sci Rep; 2019 Jan; 9(1):95. PubMed ID: 30643175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstructing a recycling and nonauxotroph biosynthetic pathway in Escherichia coli toward highly efficient production of L-citrulline.
    Jiang S; Wang D; Wang R; Zhao C; Ma Q; Wu H; Xie X
    Metab Eng; 2021 Nov; 68():220-231. PubMed ID: 34688880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of Escherichia coli for the production of phenol from glucose.
    Kim B; Park H; Na D; Lee SY
    Biotechnol J; 2014 May; 9(5):621-9. PubMed ID: 24115680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.