These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 29077382)

  • 1. Capping Ligand Vortices as "Atomic Orbitals" in Nanocrystal Self-Assembly.
    Waltmann C; Horst N; Travesset A
    ACS Nano; 2017 Nov; 11(11):11273-11282. PubMed ID: 29077382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential of mean force for two nanocrystals: Core geometry and size, hydrocarbon unsaturation, and universality with respect to the force field.
    Waltmann C; Horst N; Travesset A
    J Chem Phys; 2018 Jul; 149(3):034109. PubMed ID: 30037257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soft Skyrmions, Spontaneous Valence and Selection Rules in Nanoparticle Superlattices.
    Travesset A
    ACS Nano; 2017 Jun; 11(6):5375-5382. PubMed ID: 28514592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Many Body Effects and Icosahedral Order in Superlattice Self-Assembly.
    Waltmann T; Waltmann C; Horst N; Travesset A
    J Am Chem Soc; 2018 Jul; 140(26):8236-8245. PubMed ID: 29905064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ligand Effects in Assembly of Cubic and Spherical Nanocrystals: Applications to Packing of Perovskite Nanocubes.
    Hallstrom J; Cherniukh I; Zha X; Kovalenko MV; Travesset A
    ACS Nano; 2023 Apr; 17(8):7219-7228. PubMed ID: 37040619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ligand structure and adsorption free energy of nanocrystals on solid substrates.
    Pham M; Travesset A
    J Chem Phys; 2020 Nov; 153(20):204701. PubMed ID: 33261491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematic Mapping of Binary Nanocrystal Superlattices: The Role of Topology in Phase Selection.
    Coropceanu I; Boles MA; Talapin DV
    J Am Chem Soc; 2019 Apr; 141(14):5728-5740. PubMed ID: 30868880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Topological structure prediction in binary nanoparticle superlattices.
    Travesset A
    Soft Matter; 2016 Dec; 13(1):147-157. PubMed ID: 27156535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energetic and entropic contributions to self-assembly of binary nanocrystal superlattices: temperature as the structure-directing factor.
    Bodnarchuk MI; Kovalenko MV; Heiss W; Talapin DV
    J Am Chem Soc; 2010 Sep; 132(34):11967-77. PubMed ID: 20701285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials.
    Boles MA; Engel M; Talapin DV
    Chem Rev; 2016 Sep; 116(18):11220-89. PubMed ID: 27552640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ligand Exchange Governs the Crystal Structures in Binary Nanocrystal Superlattices.
    Wei J; Schaeffer N; Pileni MP
    J Am Chem Soc; 2015 Nov; 137(46):14773-84. PubMed ID: 26549642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Explicit all-atom modeling of realistically sized ligand-capped nanocrystals.
    Kaushik AP; Clancy P
    J Chem Phys; 2012 Mar; 136(11):114702. PubMed ID: 22443785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anisotropic Assembly of Nanocrystal/Molecular Hierarchical Superlattices Decoding from Tris-Amide Triarylamines Supramolecular Networks.
    Zhang F; Yang F; Gong Y; Wei Y; Yang Y; Wei J; Yang Z; Pileni MP
    Small; 2020 Dec; 16(48):e2005701. PubMed ID: 33169513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orientational Order in Self-Assembled Nanocrystal Superlattices.
    Fan Z; Grünwald M
    J Am Chem Soc; 2019 Feb; 141(5):1980-1988. PubMed ID: 30628775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Role of Ligand Packing Frustration in Body-Centered Cubic (bcc) Superlattices of Colloidal Nanocrystals.
    Goodfellow BW; Yu Y; Bosoy CA; Smilgies DM; Korgel BA
    J Phys Chem Lett; 2015 Jul; 6(13):2406-12. PubMed ID: 26266710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bistable magnetoresistance switching in exchange-coupled CoFe₂O₄--Fe₃O₄ binary nanocrystal superlattices by self-assembly and thermal annealing.
    Chen J; Ye X; Oh SJ; Kikkawa JM; Kagan CR; Murray CB
    ACS Nano; 2013 Feb; 7(2):1478-86. PubMed ID: 23273052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correction to Capping Ligand Vortices as "Atomic Orbitals" in Nanocrystal Self-Assembly.
    Waltmann C; Horst N; Travesset A
    ACS Nano; 2018 Aug; 12(8):8825-8830. PubMed ID: 30088760
    [No Abstract]   [Full Text] [Related]  

  • 18. Structural diversity in binary superlattices self-assembled from polymer-grafted nanocrystals.
    Ye X; Zhu C; Ercius P; Raja SN; He B; Jones MR; Hauwiller MR; Liu Y; Xu T; Alivisatos AP
    Nat Commun; 2015 Dec; 6():10052. PubMed ID: 26628256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Many-body effects in nanocrystal superlattices: departure from sphere packing explains stability of binary phases.
    Boles MA; Talapin DV
    J Am Chem Soc; 2015 Apr; 137(13):4494-502. PubMed ID: 25773648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Connecting the particles in the box--controlled fusion of hexamer nanocrystal clusters within an AB₆ binary nanocrystal superlattice.
    Treml BE; Lukose B; Clancy P; Smilgies DM; Hanrath T
    Sci Rep; 2014 Oct; 4():6731. PubMed ID: 25339169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.