These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 29078023)

  • 21. Recent developments in bio-monitoring via advanced polymer nanocomposite-based wearable strain sensors.
    Lu Y; Biswas MC; Guo Z; Jeon JW; Wujcik EK
    Biosens Bioelectron; 2019 Jan; 123():167-177. PubMed ID: 30174272
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stretchable Ti
    Cai Y; Shen J; Ge G; Zhang Y; Jin W; Huang W; Shao J; Yang J; Dong X
    ACS Nano; 2018 Jan; 12(1):56-62. PubMed ID: 29202226
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Highly Sensitive Wearable Pressure Sensors Based on Three-Scale Nested Wrinkling Microstructures of Polypyrrole Films.
    Yang C; Li L; Zhao J; Wang J; Xie J; Cao Y; Xue M; Lu C
    ACS Appl Mater Interfaces; 2018 Aug; 10(30):25811-25818. PubMed ID: 29993231
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Noninterference Wearable Strain Sensor: Near-Zero Temperature Coefficient of Resistance Nanoparticle Arrays with Thermal Expansion and Transport Engineering.
    Park T; Woo HK; Jung BK; Park B; Bang J; Kim W; Jeon S; Ahn J; Lee Y; Lee YM; Kim TI; Oh SJ
    ACS Nano; 2021 May; 15(5):8120-8129. PubMed ID: 33792304
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantifying the Piezoresistive Mechanism in High-Performance Printed Graphene Strain Sensors.
    Caffrey E; Garcia JR; O'Suilleabhain D; Gabbett C; Carey T; Coleman JN
    ACS Appl Mater Interfaces; 2022 Feb; 14(5):7141-7151. PubMed ID: 35099920
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-performance wearable strain sensors based on fragmented carbonized melamine sponges for human motion detection.
    Fang X; Tan J; Gao Y; Lu Y; Xuan F
    Nanoscale; 2017 Nov; 9(45):17948-17956. PubMed ID: 29125167
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel class of strain gauges based on layered percolative films of 2D materials.
    Hempel M; Nezich D; Kong J; Hofmann M
    Nano Lett; 2012 Nov; 12(11):5714-8. PubMed ID: 23045955
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Extremely Stretchable, Stable, and Durable Strain Sensors Based on Double-Network Organogels.
    Zhang H; Niu W; Zhang S
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32640-32648. PubMed ID: 30156107
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wearable anti-temperature interference strain sensor with metal nanoparticle thin film and hybrid ligand exchange.
    Choi YK; Park T; Lee DHD; Ahn J; Kim YH; Jeon S; Han MJ; Oh SJ
    Nanoscale; 2022 Jun; 14(24):8628-8639. PubMed ID: 35660846
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synergetic effects of ligand exchange and reduction process enhancing both electrical and optical properties of Ag nanocrystals for multifunctional transparent electrodes.
    Kang MS; Joh H; Kim H; Yun HW; Kim D; Woo HK; Lee WS; Hong SH; Oh SJ
    Nanoscale; 2018 Oct; 10(38):18415-18422. PubMed ID: 30256372
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High performance flexible strain sensor based on self-locked overlapping graphene sheets.
    Wang DY; Tao LQ; Liu Y; Zhang TY; Pang Y; Wang Q; Jiang S; Yang Y; Ren TL
    Nanoscale; 2016 Dec; 8(48):20090-20095. PubMed ID: 27896345
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multi-Functional Soft Strain Sensors for Wearable Physiological Monitoring.
    Hughes J; Iida F
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30413011
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-Powered Piezoionic Strain Sensor toward the Monitoring of Human Activities.
    Liu Y; Hu Y; Zhao J; Wu G; Tao X; Chen W
    Small; 2016 Sep; 12(36):5074-5080. PubMed ID: 27150115
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Solution-Processed Large-Area Nanocrystal Arrays of Metal-Organic Frameworks as Wearable, Ultrasensitive, Electronic Skin for Health Monitoring.
    Fu X; Dong H; Zhen Y; Hu W
    Small; 2015 Jul; 11(27):3351-6. PubMed ID: 25760306
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection.
    Lee J; Kim S; Lee J; Yang D; Park BC; Ryu S; Park I
    Nanoscale; 2014 Oct; 6(20):11932-9. PubMed ID: 25175360
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly Stretchable Multifunctional Wearable Devices Based on Conductive Cotton and Wool Fabrics.
    Souri H; Bhattacharyya D
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20845-20853. PubMed ID: 29808668
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transparent, Flexible Strain Sensor Based on a Solution-Processed Carbon Nanotube Network.
    Lee J; Lim M; Yoon J; Kim MS; Choi B; Kim DM; Kim DH; Park I; Choi SJ
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):26279-26285. PubMed ID: 28704032
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Controllable Fabrication of Percolative Metal Nanoparticle Arrays Applied for Quantum Conductance-Based Strain Sensors.
    Du Z; Chen J; Liu C; Jin C; Han M
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33137978
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Using Micro-Molding and Stamping to Fabricate Conductive Polydimethylsiloxane-Based Flexible High-Sensitivity Strain Gauges.
    Han CJ; Chiang HP; Cheng YC
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29463012
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanoparticle-Structured Highly Sensitive and Anisotropic Gauge Sensors.
    Zhao W; Luo J; Shan S; Lombardi JP; Xu Y; Cartwright K; Lu S; Poliks M; Zhong CJ
    Small; 2015 Sep; 11(35):4509-16. PubMed ID: 26037089
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.