These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

534 related articles for article (PubMed ID: 29078123)

  • 81. Effects of the suspended sediment concentration and oil type on the formation of sunken and suspended oils in the Bohai Sea.
    Gao Y; Zhao X; Ju Z; Yu Y; Qi Z; Xiong D
    Environ Sci Process Impacts; 2018 Oct; 20(10):1404-1413. PubMed ID: 30183053
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Hydrophobic high surface area zeolites derived from fly ash for oil spill remediation.
    Sakthivel T; Reid DL; Goldstein I; Hench L; Seal S
    Environ Sci Technol; 2013 Jun; 47(11):5843-50. PubMed ID: 23634731
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Enhanced ex situ bioremediation of crude oil contaminated beach sand by supplementation with nutrients and rhamnolipids.
    Nikolopoulou M; Pasadakis N; Norf H; Kalogerakis N
    Mar Pollut Bull; 2013 Dec; 77(1-2):37-44. PubMed ID: 24229785
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Oil spill modeling in deep waters: Estimation of pseudo-component properties for cubic equations of state from distillation data.
    Gros J; Dissanayake AL; Daniels MM; Barker CH; Lehr W; Socolofsky SA
    Mar Pollut Bull; 2018 Dec; 137():627-637. PubMed ID: 30503477
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Superelastic and superhydrophobic bacterial cellulose/silica aerogels with hierarchical cellular structure for oil absorption and recovery.
    He J; Zhao H; Li X; Su D; Zhang F; Ji H; Liu R
    J Hazard Mater; 2018 Mar; 346():199-207. PubMed ID: 29275109
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Pomelo peel modified with acetic anhydride and styrene as new sorbents for removal of oil pollution.
    Chai W; Liu X; Zou J; Zhang X; Li B; Yin T
    Carbohydr Polym; 2015 Nov; 132():245-51. PubMed ID: 26256347
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Characterization of solidifiers used for oil spill remediation.
    Sundaravadivelu D; Suidan MT; Venosa AD; Rosales PI
    Chemosphere; 2016 Feb; 144():1490-7. PubMed ID: 26498096
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Phosphate adsorption from aqueous solution by lanthanum-iron hydroxide loaded with expanded graphite.
    Zhang L; Jin S; Wang Y; Ji J
    Environ Technol; 2018 Apr; 39(8):997-1006. PubMed ID: 28394243
    [TBL] [Abstract][Full Text] [Related]  

  • 89. An oil spill decision matrix in response to surface spills of various bitumen blends.
    King TL; Robinson B; Cui F; Boufadel M; Lee K; Clyburne JAC
    Environ Sci Process Impacts; 2017 Jul; 19(7):928-938. PubMed ID: 28613323
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Soluble hydrocarbons uptake by porous carbonaceous adsorbents at different water ionic strength and temperature: something to consider in oil spills.
    Flores-Chaparro CE; Ruiz LFC; Alfaro-De la Torre MC; Rangel-Mendez JR
    Environ Sci Pollut Res Int; 2016 Jun; 23(11):11014-11024. PubMed ID: 26903130
    [TBL] [Abstract][Full Text] [Related]  

  • 91. How Far Are We in Combating Marine Oil Spills by Using Phase-Selective Organogelators?
    Vibhute AM; Sureshan KM
    ChemSusChem; 2020 Oct; 13(20):5343-5360. PubMed ID: 32808717
    [TBL] [Abstract][Full Text] [Related]  

  • 92. A sponge heated by electromagnetic induction and solar energy for quick, efficient, and safe cleanup of high-viscosity crude oil spills.
    Li SL; He JH; Li Z; Lu JH; Liu BW; Fu T; Zhao HB; Wang YZ
    J Hazard Mater; 2022 Aug; 436():129272. PubMed ID: 35739787
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Cellulose acetate monolith with hierarchical micro/nano-porous structure showing superior hydrophobicity for oil/water separation.
    Zhang X; Wang B; Qin X; Ye S; Shi Y; Feng Y; Han W; Liu C; Shen C
    Carbohydr Polym; 2020 Aug; 241():116361. PubMed ID: 32507171
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Water-oil separation performance of technical textiles used for marine pollution disasters.
    Seddighi M; Hejazi SM
    Mar Pollut Bull; 2015 Jul; 96(1-2):286-93. PubMed ID: 25963573
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Co-axial electrospun polystyrene/polyurethane fibres for oil collection from water surface.
    Lin J; Tian F; Shang Y; Wang F; Ding B; Yu J; Guo Z
    Nanoscale; 2013 Apr; 5(7):2745-55. PubMed ID: 23426405
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Marinobacter sp. from marine sediments produce highly stable surface-active agents for combatting marine oil spills.
    Raddadi N; Giacomucci L; Totaro G; Fava F
    Microb Cell Fact; 2017 Nov; 16(1):186. PubMed ID: 29096660
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Application of graphene aerogels in oil spill recovery: A review.
    Wu W; Du M; Shi H; Zheng Q; Bai Z
    Sci Total Environ; 2023 Jan; 856(Pt 1):159107. PubMed ID: 36181814
    [TBL] [Abstract][Full Text] [Related]  

  • 98. A novel hydroxofluorographene-coated melamine foam for efficient and repeatable oil removal from water.
    Zhou X; Li Y; Zhang C; Wang Y; Lu Y
    Environ Sci Pollut Res Int; 2020 Mar; 27(8):8071-8081. PubMed ID: 31897982
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Implications of using chemical dispersants to combat oil spills in the German Bight - Depiction by means of a Bayesian network.
    Liu Z; Callies U
    Environ Pollut; 2019 May; 248():609-620. PubMed ID: 30836242
    [TBL] [Abstract][Full Text] [Related]  

  • 100. A Novel Freeze-Drying-Free Strategy to Fabricate a Biobased Tough Aerogel for Separation of Oil/Water Mixtures.
    Li K; Luo Q; Xu J; Li K; Zhang W; Liu L; Ma J; Zhang H
    J Agric Food Chem; 2020 Mar; 68(12):3779-3785. PubMed ID: 32142264
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.